Int J Sports Med 2007; 28(1): 33-39
DOI: 10.1055/s-2006-924037
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effectiveness of Low-Intensity Endurance Training

T. Meyer1 , M. Auracher1 , K. Heeg1 , A. Urhausen2 , W. Kindermann1
  • 1Institute of Sports and Preventive Medicine, University of Saarland, Saarbrücken, Germany
  • 2Centre de l' Appareil Locomoteur, de Médecine du Sport et de Prévention, Centre Hospitalier de Luxembourg-Clinique d'Eich, Luxembourg
Further Information

Publication History

Accepted after revision: February 6, 2006

Publication Date:
17 August 2006 (online)

Abstract

Recent studies point to the preventive efficacy of low-intensity endurance training in terms of cardiovascular risk factor modification and mortality reduction. In addition, it is frequently recommended as a means of stimulating fat metabolism. It was the intention of this study to clarify if endurance training effectiveness remains unimpaired when exercise intensity is reduced by a certain amount from “moderate” to “low”, but total energy expenditure held constant. For this purpose, 39 healthy untrained subjects (44 ± 7 yrs, 82 ± 19 kg; 173 ± 9 cm) were stratified for endurance capacity and sex and randomly assigned to 3 groups: “moderate intensity” (MOD, n = 13, 5 sessions per week, 30 min each, intensity 90 % of the anaerobic threshold [baseline lactate + 1.5 mmol/l]), “low intensity” (LOW, n = 13, 5 sessions per week, intensity 15 bpm below MOD, duration proportionally longer to arrive at the same total energy output as MOD), and control (CO, n = 13, no training). Training was conducted over 12 weeks and each session monitored by means of portable heart rate (HR) recorders. Identical treadmill protocols prior to and after the training program served for exercise prescription and documentation of endurance effects. V·O2max improved similarly in both training groups (MOD + 1.5 ml · min-1 · kg-1; LOW + 1.7 ml · min-1 · kg-1; p = 0.97 between groups). Compared with CO (- 1.0 ml · min-1 · kg-1) this effect was significant for LOW (p < 0.01) whereas there was only a tendency for MOD (p = 0.07). However, objective criteria (HRmax, maximal blood lactate) indicated that a different degree of effort was responsible for this finding. In comparison with CO (mean decrease of 3 bpm), average HR during incremental exercise decreased significantly by 9 bpm (MOD, p < 0.05 vs. CO) and 6 bpm (LOW, p = 0.26), respectively. However, there was no significant difference between MOD and LOW (p = 0.60), but for changes in oxygen uptake at the anaerobic threshold (V·O2AT) it was observed that MOD was significantly more effective than CO (p = 0.048) and LOW (p = 0.04). It is concluded that within a middle-aged population of healthy untrained subjects, endurance training effectiveness might be slightly impaired when the training heart rate is chosen 15 bpm lower as compared to moderate intensity, but the total energy output held equal.

References

  • 1 Achten J, Gleeson M, Jeukendrup A E. Determination of the exercise intensity that elicits maximal fat oxidation.  Med Sci Sports Exerc. 2002;  34 92-97
  • 2 Bagger M, Pedersen P H, Pedersen P K. Biological variation in variables associated with exercise training.  Int J Sports Med. 2003;  24 433-440
  • 3 Bergh U, Sjodin B, Forsberg A, Svedenhag J. The relationship between body mass and oxygen uptake during running in humans.  Med Sci Sports Exerc. 1991;  23 205-211
  • 4 Bishop P, Martino M. Blood lactate measurement in recovery as an adjunct to training. Practical considerations.  Sports Med. 1993;  16 5-13
  • 5 Blair S N, Kohl H W, Barlow C E, Paffenbarger R S, Gibbons L W, Macera C A. Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men.  JAMA. 1995;  273 1179-1184
  • 6 Burke J, Thayer R, Belcamino M. Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds.  Br J Sports Med. 1994;  28 18-21
  • 7 Crouse S F, O'Brien B C, Grandjean P W, Lowe R C, Rohack J J, Green J S, Tolson H. Training intensity, blood lipids, and apolipoproteins in men with high cholesterol.  J Appl Physiol. 1997;  82 270-277
  • 8 Davies C TM, Knibbs A V. The training stimulus - the effects of intensity, duration and frequency of effort on maximum aerobic power output.  Int Z Angew Physiol. 1971;  29 299-305
  • 9 Denis C, Fouquet R, Poty P, Geyssant A, Lacour J R. Effect of 40 weeks of endurance training on the anaerobic threshold.  Int J Sports Med. 1982;  3 208-214
  • 10 Duncan G E, Anton S D, Sydeman S J, Newton R L, Corsica J A, Durning P E, Ketterson T U, Martin A D, Limacher M C, Perri M G. Prescribing exercise at varied levels of intensity and frequency - a randomized trial.  Arch Intern Med. 2005;  165 2362-2369
  • 11 Duncan G E, Howley E T, Johnson B N. Applicability of V·O2max criteria: discontinuous versus continuous protocols.  Med Sci Sports Exerc. 1997;  29 273-278
  • 12 Erikssen G, Liestol K, Bjornholt J, Thaulow E, Sandvik L, Erikssen J. Changes in physical fitness and changes in mortality.  Lancet. 1998;  352 759-762
  • 13 Gaesser G A, Rich R G. Effects of high- and low-intensity exercise training on aerobic capacity and blood lipids.  Med Sci Sports Exerc. 1984;  16 269-274
  • 14 Gettman L R, Pollock M L, Durstine J L, Ward A, Ayres J, Linnerud A C. Physiological responses of men to 1, 3, and 5 days per week training programs.  Res Q. 1976;  47 638-646
  • 15 Golden H P, Vaccaro P. The effects of endurance training intensity on the anaerobic threshold.  J Sports Med. 1984;  24 205-211
  • 16 Gossard D, Haskell W L, Taylor C B, Mueller J K, Rogers F, Chandler M, Ahn D K, Miller N H, DeBusk R F. Effects of low- and high-intensity home-based exercise training on functional capacity in healthy middle-aged men.  Am J Cardiol. 1986;  57 446-449
  • 17 Hagberg J M, Coyle E F. Physiological determinants of endurance performance as studied in competitive racewalkers.  Med Sci Sports Exerc. 1983;  15 287-289
  • 18 Heil D P. Body mass scaling of peak oxygen uptake in 20- to 79-yr-old adults.  Med Sci Sports Exerc. 1997;  29 1602-1608
  • 19 Hickson R C, Foster C, Pollock M L, Galassi T M, Rich S. Reduced training intensities and loss of aerobic power, endurance, and cardiac growth.  J Appl Physiol. 1985;  58 492-499
  • 20 Hickson R C, Rosenkoetter M A. Reduced training frequencies and maintenance of increased aerobic power.  Med Sci Sports Exerc. 1981;  13 13-16
  • 21 Hollmann W, Rost R, Liesen H, Dufaux B, Heck H, Mader A. Assessment of different forms of physical activity with respect to preventive and rehabilitative cardiology.  Int J Sports Med. 1981;  2 67-80
  • 22 Hollmann W, Venrath H. Die Beeinflussung von Herzgröße, maximaler O2-Aufnahme und Ausdauergrenze durch ein Ausdauertraining mittlerer und hoher Intensität.  Der Sportarzt. 1963;  9 189-193
  • 23 Karvonen M, Kentala K, Mustala O. The effects of training heart rate: a longitudinal study.  Ann Med Exp Biol Fenn. 1957;  35 307-315
  • 24 Katch V, Weltman A, Sady S, Freedson P. Validity of the relative percent concept for equating training intensity.  Eur J Appl Physiol. 1978;  39 219-227
  • 25 Kearney J T, Stull G A, Ewing J L, Strein J W. Cardiorespiratory responses of sedentary college women as a function of training intensity.  J Appl Physiol. 1976;  41 822-825
  • 26 Kraus W E, Houmard J A, Duscha B D, Knetzger K J, Wharton M B, McCartney J S, Bales C W, Henes S, Samsa G Pl, Otvos J D, Kulkarni K R, Slentz C A. Effects of the amount and intensity of exercise on plasma lipoproteins.  N Engl J Med. 2002;  347 1483-1492
  • 27 Londeree B R. Effect of training on lactate/ventilatory thresholds: a meta-analysis.  Med Sci Sports Exerc. 1997;  29 837-843
  • 28 Manson J A, Hu F B, Rich-Edwards J W, Colditz G A, Stampfer M J, Willett W C, Speizer F E, Hennekens C H. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women.  N Engl J Med. 1999;  341 650-658
  • 29 McConnell T R. Practical considerations in the testing of V·O2max in runners.  Sports Med. 1988;  5 57-68
  • 30 Meyer T, Gabriel H HW, Kindermann W. Is determination of exercise intensities as percentages of V·O2max or HRmax adequate?.  Med Sci Sports Exerc. 1999;  31 1342-1345
  • 31 Meyer T, Görge G, Schwaab B, Hildebrandt K, Walldorf J, Schäfer C, Kindermann I, Scharhag J, Kindermann W. An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure - A randomized controlled training study.  Am Heart J. 2005;  149 926.e1-926.e7 DOI: 10.1016/j.ahj.2004.12.006
  • 32 Meyer T, Scharhag J, Kindermann W. Peak oxygen uptake - myth and truth about an internationally accepted reference value.  Z Kardiol. 2005;  94 255-264
  • 33 O'Donovan G, Owen A, Bird S R, Kearney E M, Nevill A M, Jones D W, Woolf-May K. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost.  J Appl Physiol. 2005;  98 1619-1625
  • 34 Paffenbarger R S, Hyde R T, Wing A L, Hsieh C-C. Physical activity, all-cause mortality, and longevity of college alumni.  New Engl J Med. 1986;  314 605-613
  • 35 Pelayo P, Mujika I, Sidney M, Chatard J-C. Blood lactate recovery measurements, training, and performance during a 23-week period of competitive swimming.  Eur J Appl Physiol. 1996;  74 107-113
  • 36 Pollock M L, Gaesser G A, Butcher J D, Després J-P, Dishman R K, Franklin B A, Garber C E. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults.  Med Sci Sports Exerc. 1998;  30 975-991
  • 37 Pollock M L, Gettman L R, Milesis C A, Bah M D, Durstine L, Johnson R B. Effects of frequency and duration of training on attrition and incidence of injury.  Med Sci Sports Exerc. 1977;  9 31-36
  • 38 Roecker K, Schotte O, Niess A M, Horstmann T, Dickhuth H H. Predicting competition performance in long-distance running by means of a treadmill test.  Med Sci Sports Exerc. 1998;  30 1552-1557
  • 39 Sharkey B J. Intensity and duration of training and the development of cardiorespiratory endurance.  Med Sci Sports Exerc. 1970;  2 197-202
  • 40 Shephard R J. Intensity, duration and frequency of exercise as determinants of the response to a training regime.  Int Z Angew Physiol einschl Arbeitsphysiol. 1968;  26 272-278
  • 41 Wagner A, Simon C, Evans A, Ferrières J, Montaye M, Ducimetière P, Arveiler D. Physical activity and coronary event incidence in Northern Ireland and France - the prospective epidemiological study of myocardial infarction (PRIME).  Circul. 2002;  105 2247-2252
  • 42 Wannamethee S G, Shaper A G, Walker M. Physical activity and mortality in older men with diagnosed coronary heart disease.  Circul. 2000;  102 1358-1363
  • 43 Weltman A, Seip R L, Snead D, Weltman J Y, Haskvitz E M, Evans W S, Veldhuis J D, Rogol A D. Exercise training at and above the lactate threshold in previously untrained women.  Int J Sports Med. 1992;  13 257-263
  • 44 Weltman A, Snead D, Seip R, Schurrer R, Weltman J, Rutt R, Rogol A. Percentages of maximal heart rate, heart rate reserve, and V·O2max for determining endurance training intensity in male runners.  Int J Sports Med. 1990;  11 218-222
  • 45 Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D, Kaiser D, Rogol A. Percentages of maximal heart rate, heart rate reserve, and V·O2peak for determining endurance training intensity in sedentary women.  Int J Sports Med. 1989;  10 212-216

M.D., PhD Tim Meyer

Institute of Sports and Preventive Medicine
University of Saarland
Faculty of Clinical Medicine
Campus, Bldg. B 8.2

66123 Saarbrücken

Germany

Phone: + 496813023750

Fax: + 49 68 13 02 42 96

Email: tim.meyer@mx.uni-saarland.de

    >