Plant Biol (Stuttg) 2007; 9(1): 101-108
DOI: 10.1055/s-2006-924455
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Genetic Diversity of Picea asperata Populations Based on RAPDs

X. Xue1 , 2 , Y. Wang1 , 2 , H. Korpelainen3 , C. Li1
  • 1Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China
  • 2Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
  • 3Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
Further Information

Publication History

Received: December 8, 2005

Accepted: June 14, 2006

Publication Date:
28 September 2006 (online)

Abstract

The genetic diversity of ten natural populations of Picea asperata Mast. were studied using RAPD markers. A total of 160 reproducible fragments were produced from the ten primers used. The mean number of fragments detected per individual was 114.7. Altogether 120 fragments were polymorphic among the ten populations, none of them were found to be population-specific. Nei's expected heterozygosity (He) ranged from 0.233 to 0.269, and the average was 0.247. The analysis of molecular variance revealed that the coefficient of gene differentiation among populations, based on FST and the unbiased estimate Φst, equaled 0.224 and 0.290, respectively. Such high values indicate that there is significant differentiation among populations, which could result from several factors, including restricted gene flow between populations (Nm = 0.866). Founder events may be another factor attributing to the high level of genetic differentiation. In addition, it was discovered that the geographic distribution is not correlated with the genetic distances among the populations of P. asperata.

References

  • 1 Aitken S. N., Libby W. T.. Evolution of the pygmy-forest edaphic subspecies of Pinus contorta across an ecological staircase.  Evolution. (1994);  48 1009-1019
  • 2 Allard R. W., Babbel G. R., Clegg M. T., Kahler A. L.. Evidence for coadaptation in Avena barbata. .  Proceedings of the National Academy of Sciences of the USA. (1972);  69 3043-3048
  • 3 Allendorf F. W., Leary R. F.. Heterozygosity and fitness in natural populations of animals. Soule, M. E., ed. Conservation Biology. Sunderland, MA; Sinauer, The Science of Scarcity and Diversity (1986): 57-76
  • 4 Allnutt T. R., Newton A. C., Premoli A., Lara A.. Genetic variation in the threatened South American conifer Pligerrodendron uviferum (Cupressaceae), detected using RAPD markers.  Biological Conservation. (2003);  114 245-253
  • 5 Bergmann F., Ruetz W.. Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations.  Forest Ecology and Management. (1991);  46 39-47
  • 6 Bobola M. S., Eckert R. T., Klein A. S.. Restriction fragment variation in the nuclear ribosomal DNA repeat unit within and between Picea rubens and Picea mariana.  Canadian Journal of Forest Research. (1992 a);  22 255-263
  • 7 Bobola M. S., Smith D. E., Klein A. S.. Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and Picea mariana. .  Molecular Biology and Evolution. (1992 b);  9 125-137
  • 8 Bobola M. S., Eckert R. T., Klein A. S., Stapelfeldt K., Smityh D. E., Guenette D.. Using nuclear and organelle DNA markers to discriminate among Picea rubens, Picea mariana, and their hybrids.  Canadian Journal of Forest Research. (1996);  26 433-443
  • 9 Bucci G., Menozzi P.. Genetic variation of RAPD markers in a Picea abies Karst. population.  Heredity. (1995);  75 188-197
  • 10 Collignon A. M., Favre J. M.. Contribution to the postglacial history at the western margin of Picea abies natural area using RAPD markers.  Annals of Botany. (2000);  85 713-722
  • 11 Collignon A. M., Van de Sype H., Favre J. M.. Geographical variation in random amplified polymorphic DNA and quantitative traits in Norway spruce.  Canadian Journal of Forest Research. (2002);  32 266-282
  • 12 Cornuet J. M., Luikart G.. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data.  Genetics. (1996);  144 2001-2014
  • 13 Doyle J. J., Doyle J. L.. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.  Phytochemistry Bulletin. (1987);  19 11-15
  • 14 Edwards A. L., Wyatt R.. Population genetics of the rare Asclepias texana and its widespread sister species, A. perennis.  Systematic Botany. (1994);  19 291-307
  • 15 Endler J.. Geographic Variation, Speciation, and Clines. Princeton; Princeton University Press (1977)
  • 16 Excoffier L.. Analysis of molecular variances (AMOVA). Version 1.5. Genetics and Biometry Laboratory, University of Geneva. (1993)
  • 17 Excoffier L., Smouse P. E., Quattro J. M.. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.  Genetics. (1992);  131 479-491
  • 18 Fang J.. The distribution pattern of Chinese natural vegetation and its climatologic and topographic interpretations. Fang, J., ed. Researches on Hotspots of Modern Ecology. Beijing; China Science and Technology Press (1996): 369-380
  • 19 Gapare W. J., Aitken S. N., Ritland C. E.. Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis [Bong.] Carr) populations: implications for conversation of widespread species.  Biological Conservation. (2005);  123 113-123
  • 20 Gitzendanner M. A., Soltis P. S.. Patterns of genetic variation in rare and widespread plant congeners.  American Journal of Botany. (2000);  87 783-792
  • 21 Guries R. P., Ledig F. T.. Genetic diversity and population structure in pitch pine (Pinus rigida Mill.).  Evolution. (1982);  36 387-402
  • 22 Hamrick J. L., Godt M. J. W.. Allozyme diversity in plant species. Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S., eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland, MA, USA; Sinauer (1989): 43-63
  • 23 Hamrick J. L., Godt M. J. W., Sherman-Broyles S. L.. Factors influencing levels of genetic diversity in woody plant species.  New Forests. (1992);  6 95-124
  • 24 Hedrick P. W., Brussard P. F., Allendorf F. W., Beardmore J. A., Orzack S.. Protein variation, fitness, and captive propagation.  Zoological Biology. (1986);  5 91-99
  • 25 Hodgetts R. B., Aleksiuk M. A., Brown A., Clarke C., Macdonald E., Nadeem S., Khasa D., Macdonald E.. Development of microsatellite markers for white spruce (Picea glauca) and related species.  Theoretical and Applied Genetics. (2001);  102 1252-1258
  • 26 Isabel N., Beaulieu J., Bousquet J.. Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce.  Proceedings of the National Academy of Sciences of the USA. (1995);  92 6369-6373
  • 27 Isabel N., Beaulieu J., Thériault P., Bousquet J.. Direct evidence for biased gene diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints.  Molecular Ecology. (1999);  8 477-483
  • 28 Jaramillo-Correa J. P., Beaulieu J., Bousquet J.. Constrasting evolutionary forces driving population structure at ESTPs, allozymes and quantitative traits in white spruce.  Molecular Ecology. (2001);  10 2729-2740
  • 29 Karron J. D.. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners.  Evolutionary Ecology. (1987);  1 47-58
  • 30 Khasa P. D., Dancik B. P.. Rapid identification of white-Engelmann spruce species by RAPD markers.  Theoretical and Applied Genetics. (1996);  92 46-52
  • 31 Kimura M., Weiss G. W.. The stepping stone model of population structure and the decrease of genetic correlation with distance.  Genetics. (1964);  49 561-576
  • 32 Kraj W.. The estimation of genetic variation within and between Polish provenances of Norway spruce (Picea abies [L.] Karst.) on the basis of RAPD polymorphism.  Electronic Journal of Polish Agricultural University, Forestry. (2002);  5 (2) http://www.ejpau.media.pl/series/volume5/issue2/forestry/art-02.html
  • 33 Lagercrantz U., Ryman N.. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation.  Evolution. (1990);  44 38-53
  • 34 Lawton J. H.. Range, population abundance and conservation.  Trends in Ecology and Evolution. (1993);  8 409-413
  • 35 Levin D. A.. Developmental instability and evolution in peripheral isolates.  American Naturalist. (1970);  104 343-353
  • 36 Li P., Adams W. T.. Range-wide patterns of allozyme variation in Douglas fir (Pseudotsuga menziesii).  Canadian Journal of Forest Research. (1989);  19 149-161
  • 37 Linhart Y. B., Premoli A. C.. Genetic variation in Altes acaulis and its relative, the narrow endemic A. humilis (Apiaceae).  American Journal of Botany. (1993);  80 598-605
  • 38 Liu Z., Fang J., Piao S.. Geographical distribution of species in genera Abies, Picea and Larix in China.  Acta Geographica Sinica. (2002);  57 577-586
  • 39 Luikart G., Allendorf F. W., Cornuet J. M., Sherwin W. B.. Distortion of allele frequency distributions provides a test for recent population bottlenecks.  Journal of Heredity. (1998);  89 238-247
  • 40 Luikart G., Cornuet J. M.. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data.  Conservation Biology. (1998);  12 228-237
  • 41 Luo J., Wang Y., Korpelainen H., Li C.. Allozyme variation in natural populations of Picea asperata.  Silva Fennica. (2005);  39 167-176
  • 42 Lundkvist K.. Allozyme frequency distributions in four Swedish populations of Norway spruce (Picea abies Karst.). I. Estimations of genetic variation within and among populations, genetic linkage and a mating system parameter.  Hereditas. (1979);  90 127-143
  • 43 Lynch M., Milligan B. G.. Analysis of population genetic structure with RAPD markers.  Molecular Ecology. (1994);  3 91-99
  • 44 Manni F., Guérard E., Heyer E.. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier's algorithm”.  Human Biology. (2004);  76 173-190
  • 45 Mantel N.. The detection of disease clustering and a generalized regression approach.  Cancer Research. (1967);  27 209-220
  • 46 Mayr E.. Populations, Species and Evolution. Cambridge; Harvard University Press (1970)
  • 47 Morris R. W., Spieth P. T.. Sampling strategies for using females gametophytes to estimate heterozygosities in conifers.  Theoretical and Applied Genetics. (1978);  51 217-222
  • 48 Müller-Starck G.. Genetic variation in high elevated populations of Norway spruce (Picea abies [L.] Karst.) in Switzerland.  Silvae Genetica. (1995);  44 356-362
  • 49 Nicholls J. A., Austin J. J.. Phylogeography of an east Australian wet-forest bird, the satin bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology.  Molecular Ecology. (2005);  14 1485-1496
  • 50 Nkongolo K. K., Deverno L., Michael P.. Genetic validation and characterization of RAPD markers differentiating black and red spruces: molecular certification of spruce trees and hybrids.  Plant Systematics and Evolution. (2003);  236 151-163
  • 51 Perez de la Vega M., Saenz-de-Miera L. E., Allard R. W.. Ecogeographical distribution and differential adaptedness of multilocus allelic associations in Spanish Avena Sativa L.  Theoretical and Applied Genetics. (1994);  88 56-64
  • 52 Perron M., Gordon A. G., Bousquet J.. Species-specific RAPD fingerprints for the closely related Picea mariana and P. rubens.  Theoretical and Applied Genetics. (1995);  91 142-149
  • 53 Perry D. J., Bousquet J.. Sequence-tagged-site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce.  Genetics. (1998 a);  149 1089-1098
  • 54 Perry D. J., Bousquet J.. Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers.  Theoretical and Applied Genetics. (1998 b);  97 735-743
  • 55 Perry D. J., Nathalie I., Bousquet J.. Sequence-tagged-site (STS) markers of arbitrary genes: the amount and nature of variation revealed in Norway spruce.  Heredity. (1999);  83 239-248
  • 56 Perry D. J., Bousquet J.. Genetic diversity and mating system of post-fire and post-harvest black spruce: an investigation using sequence-tagged-site (STS) markers.  Canadian Journal of Forest Research. (2001);  31 32-40
  • 57 Rajora O. P.. Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce.  Theoretical and Applied Genetics. (1999);  99 954-961
  • 58 Rajora O. P., Pluhar S. A.. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana).  Theoretical and Applied Genetics. (2003);  106 1203-1212
  • 59 Scheepers D., Eloy M. C., Briquet M.. Use of RAPD patterns for clone verification and in studying provenance relationships in Norway spruce (Picea abies).  Theoretical and Applied Genetics. (1997);  94 480-485
  • 60 Sherman-Broyles S. L., Gibson J. P., Hamrick J. L., Bucher M. A., Gibson M. J.. Comparison of allozyme diversity among rare and widespread Rhus species.  Systematic Botany. (1992);  17 551-559
  • 61 Stoehr M. U., El-Kassaby Y. A.. Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia.  Theoretical and Applied Genetics. (1997);  94 83-90
  • 62 Thomas B. R., Macdonald S. E., Hicks M., Adams D. L., Hodgetts R. B.. Effects or reforestation methods on genetic diversity of lodgepole pine: an assessmwnt using microsatellite and randomly amplified polymorphic DNA markers.  Theoretical and Applied Genetics. (1999);  98 793-801
  • 63 Vekemans X.. AFLP-SURV version 1.0. Distributed by the author. Université Libre de Bruxelles, Belgium: Laboratoire de Génétique et Ecologie Végétale. (2002)
  • 64 Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M.. AFLP: a new technique for DNA fingerprinting.  Nucleic Acids Research. (1995);  23 4407-4414
  • 65 Wang Y., Luo J., Xue X., Korpelainen H., Li C.. Diversity of microsatellite markers in the populations of Picea asperata originating from the mountains of China.  Plant Science. (2005);  168 707-714
  • 66 Weber J. L., May P. E.. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction.  American Journal of Human Genetics. (1989);  44 388-396
  • 67 Welsh J., McClelland M.. Fingerprinting genomes using PCR with arbitrary primers.  Nucleic Acids Research. (1990);  18 7213-7218
  • 68 Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V.. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.  Nucleic Acids Research. (1990);  18 6531-6535
  • 69 Wright S.. Isolation by distance.  Genetics. (1943);  28 114-138
  • 70 Wright S.. The genetic structure of populations.  Annals of Eugenics. (1951);  15 323-354
  • 71 Wu Z.. The distribution of major tree species in alpine forest area of western Sichuan and some proposals for regeneration report and planning of tree species for plantation.  Scientia Silvae Sinicae. (1959);  5 465-478
  • 72 Zhivotovsky L. A.. Estimating population structure in diploids with multilocus dominant DNA markers.  Molecular Ecology. (1999);  8 907-913
  • 73 Zietkiewicz E., Rafalski A., Labuda D.. Genome fingerprinting by simple sequence repeat (SSR-) anchored polymerase chain reaction amplification.  Genomics. (1994);  20 176-183

C. Li

Chengdu Institute of Biology
Chinese Academy of Sciences

P.O. Box 416

Chengdu 610041

China

Email: licy@cib.ac.cn

Editor: M. Koornneef

    >