Abstract
Plants have evolved strategies of stimulating and supporting specific groups of antagonistic
microorganisms in the rhizosphere as a defense against diseases caused by soilborne
plant pathogens owing to a lack of genetic resistance to some of the most common and
widespread soilborne pathogens. Some of the best examples of natural microbial defense
of plant roots occur in disease suppressive soils. Soil suppressiveness against many
different diseases has been described. Take-all is an important root disease of wheat,
and soils become suppressive to take-all when wheat or barley is grown continuously
in a field following a disease outbreak; this phenomenon is known as take-all decline
(TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment
during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing
Pseudomonas fluorescens to a density of 105 CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici . 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence
is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in
many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers
(designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based
(rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of phlD, and phylogenetic analysis of phlD, but the number of genotypes is expected to increase. The genotype of an isolate is
predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often
occur in a single soil and the crop species grown modulates the outcome of the competition
among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective
biocontrol agents against a variety of plant diseases and ideally suited for serving
as vectors for expressing other biocontrol traits in the rhizosphere.
Key words
Antibiotics - biological control - rhizobacteria - suppressive soil - take-all
References
1
Abbas A., Morrissey J. P., Marquez P. C., Sheehan M. M., Delany I. R., O'Gara F..
Characterization of interactions between the transcriptional repressor PhlF and its
binding site at the phlA promoter in Pseudomonas fluorescens F113.
Journal of Bacteriology.
(2002);
184
3008-3016
2
Achkar J., Xian M., Zhao H., Frost J. W..
Biosynthesis of phloroglucinol.
Journal of the American Chemical Society.
(2005);
127
5332-5333
3
Alabouvette C..
Fusarium wilt-suppressive soils from the Chateaurenard region: review of a 10-year
study.
Agronomie.
(1986);
6
273-284
4 Alabouvette C..
Biological control of Fusarium wilt pathogens in suppressive soils. Hornby, D., ed. Biological Control of Soil-Borne Plant Pathogens. Wallingford; CAB
International (1990): 27-43
5
Alabouvette C., Lemanceau P., Steinberg C..
Recent advances in the biological control of Fusarium wilts.
Pesticide Science.
(1993);
37
365-373
6
Andrews J. H., Harris R. F..
The ecology and biogeography of microorganisms on plant surfaces.
Annual Review of Phytopathology.
(2000);
38
145-180
7 Atkinson T. G., Neal J. L., Larson R. I..
Genetic control of the rhizosphere microflora of wheat. Bruehl, G. W., ed. Biology and Control of Soil-Borne Plant Pathogens. St. Paul, MN;
American Phytopathological Society (1975): 116-122
8
Baehler E., Bottiglieri M., Pechy-Tarr M., Maurhofer M., Keel C..
Use of green fluorescent protein-based reporters to monitor balanced production of
antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0.
Journal of Applied Microbiology.
(2005);
99
24-38
9
Baehler B., de Werra P., Wick L. Y., Péchy-Tarr M., Mathys S., Maurhofer M., Keel C..
Two novel MvaT-like global regulators control exoproduct formation and biocontrol
activity in root-associated Pseudomonas fluorescens CHA0.
Molecular Plant-Microbe Interactions.
(2006);
19
313-329
10 Baker K. F., Cook R. J.. Biological Control of Plant Pathogens. San Francisco;
W. H. Freeman (1974): 433
11
Bakker P. A. H. M., Lamers J. G., Bakker A. W., Marugg J. D., Weisbeek P. J., Schippers B..
The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato.
Netherlands Journal of Plant Pathology.
(1986);
92
249-256
12
Bangera M. G., Thomashow L. S..
Identification and characterization of a gene cluster for synthesis of the polyketide
antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87.
Journal of Bacteriology.
(1999);
181
3155-3163
13
Bergsma-Vlami M., Prins M. E., Raaijmakers J. M..
Influence of plant species on population dynamics, genotypic diversity and antibiotic
production in the rhizosphere by indigenous Pseudomonas spp.
FEMS Microbiology Ecology.
(2005 a);
52
59-69
14
Bergsma-Vlami M., Prins M. E., Staats M., Raaijmakers J. M..
Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis.
Applied and Environmental Microbiology.
(2005 b);
71
993-1003
15
Blankenfeldt W., Kuzin A. P., Skarina T., Korniyenko Y., Tong L., Bayer P., Janning P.,
Thomashow L. S., Mavrodi D. V..
Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescen s.
Proceedings of the National Academy of Sciences of the USA.
(2004);
101
16431-16436
16
Blouin Bankhead S., Landa B. B., Lutton E., Weller D. M., McSpadden-Gardener B. B..
Minimal changes in rhizobacterial population structure following root colonization
by wild type and transgenic biocontrol strains.
FEMS Microbiology Ecology.
(2004);
49
307-318
17
Bonsall R. F., Weller D. M., Thomashow L. S..
Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat.
Applied and Environmental Microbiology.
(1997);
63
951-955
18
Bottiglieri M., Keel C..
Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound
2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0.
Applied and Environmental Microbiology.
(2006);
72
418-427
19
Bull C. T., Weller D. M., Thomashow L. S..
Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79.
Phytopathology.
(1991);
81
954-959
20 Campbell R., Greaves M. P..
Anatomy and community structure of the rhizosphere. Lynch, J. M., ed. The Rhizosphere. Chichester; Wiley and Son (1990): 11-34
21
Chin-A-Woeng T. F. C., Bloemberg G. V., van der Bij A. J., van der Drift K. M. G. M.,
Schripsema J., Kroon B., Scheffer R. J., Keel C., Bakker P. A. H. M., Tichy H.-S.,
de Bruijn F. J., Thomas-Oates J. E., Lugtenberg B. J. J..
Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis -lycopersici .
Molecular Plant-Microbe Interactions.
(1998);
11
1069-1077
22
Chin-A-Woeng T. F. C., Bloemberg G. V., Lugtenberg B. J. J..
Phenazines and their role in biocontrol by Pseudomonas bacteria.
New Phytologist.
(2003);
157
503-523
23
Chin-A-Woeng T. F. C., Bloemberg G. V., Mulders I. H. M., Dekkers L. C., Lugtenberg B. J. J..
Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot.
Molecular Plant-Microbe Interactions.
(2000);
13
1340-1345
24
Chin-A-Woeng T. F. C., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V..
Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing
Pseudomonas spp. strains.
Molecular Plant-Microbe Interactions.
(2001);
14
1006-1015
25
Cook R. J..
The influence of rotation crops on take-all decline phenomenon.
Phytopathology.
(1981);
71
189-192
26
Cook R. J..
Take-all of wheat.
Physiological and Molecular Plant Pathology.
(2003);
62
73-86
27 Cook R. J..
Take-all decline: model system in the science of biological control and clue to the
success of intensive cropping. Vincent, C., Goettel, M., and Lazarovits, G., eds. Biological Control: Case Studies
from Around the World. Wallingford, UK; CABI Publishing (2006) in press
28
Cook R. J., Rovira A. D..
The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils.
Soil Biology and Biochemistry.
(1976);
8
269-273
29
Cook R. J., Thomashow L. S., Weller D. M., Fujimoto D., Mazzola M., Bangera G., Kim D.-S..
Molecular mechanisms of defense by rhizobacteria against root disease.
Proceedings of the National Academy of Sciences of the USA.
(1995);
92
4197-4201
30 Cook R. J., Weller D. M..
Management of take-all in consecutive crops of wheat or barley. Chet, I., ed. Innovative Approaches to Plant Disease Control. New York; Wiley Press
(1987): 41-76
31
Corbell N. A., Kraus J., Loper J. E..
A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5.
Journal of Bacteriology.
(1995);
177
6230-6236
32
Cronin D., Moënne-Loccoz Y., Fenton A., Dunne C., Dowling D. N., O'Gara F..
Role of 2,4-diacetylphloroglucinol in the interaction of the biocontrol pseudomonad
strain F113 with the potato cyst nematode Globodera rostochiensis .
Applied and Environmental Microbiology.
(1997 a);
63
1357-1361
33
Cronin D., Moënne-Loccoz Y., Fenton A., Dunne C., Dowling D. N., O'Gara F..
Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica .
FEMS Microbiology Ecology.
(1997 b);
23
95-106
34
Deacon J. W..
Biological control of the take-all fungus, Gaeumannomyces graminis, by Phialophora radicicola and similar fungi.
Soil Biology and Biochemistry.
(1976);
8
275-283
35
De La Fuente L., Landa B. B., Weller D. M..
Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing
Pseudomonas fluorescens.
.
Phytopathology.
(2006 a);
96
751-762
36
De La Fuente L., Mavrodi D. V., Landa B. B., Thomashow L. S., Weller D. M..
phlD -based genetic diversity and detection of genotypes of 2,4-diacetylpholorogucinol-producing
Pseudomonas fluorescens.
.
FEMS Microbiology Ecology.
(2006 b);
56
64-78
37
De La Fuente L., Thomashow L. S., Weller D. M., Bajsa N., Quagliotto L., Chernin L.,
Arias A..
Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics and
exerts a broad spectrum of biocontrol activity.
European Journal of Plant Pathology.
(2004);
110
671-681
38
Delaney S. M., Mavrodi D. V., Bonsall R. F., Thomashow L. S..
phzO - a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84.
Journal of Bacteriology.
(2001);
183
318-327
39
Delany I., Sheehan M. M., Fenton A., Bardin S., Aarons S., O'Gara F..
Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in
Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor.
Microbiology.
(2000);
146
537-546
40
de Souza J. T., Arnould C., Deulvot C., Lemanceau P., Gianinazzi-Pearson V., Raaijmakers J. M..
Effect of 2,4-diacetylphloroglucinol on Pythium : cellular responses and variation in sensitivity among propagules and species.
Phytopathology.
(2003 a);
93
966-975
41
de Souza J. T., Weller D. M., Raaijmakers J. M..
Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent
Pseudomonas spp. in Dutch take-all decline soils.
Phytopathology.
(2003 b);
93
54-63
42
Dewan M. M., Sivasithamparam K..
Growth promotion of rotation crop species by a sterile red fungus from wheat and effect
of soil temperatures and water potential on its suppression of take-all.
Mycological Research.
(1989);
93
156-160
43
Duffy B. K., Défago G..
Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic
biosynthesis.
Phytopathology.
(1997);
87
1250-1257
44
Duffy B., Keel C., Défago G..
Potential role of pathogen signaling in multitrophic plant-microbe interactions involved
in disease protection.
Applied and Environmental Microbiology.
(2004);
70
1836-1842
45
Duffy B., Schouten A., Raaijmakers J. M..
Pathogen self-defense to counteract microbial antagonism.
Annual Review of Phytopathology.
(2003);
41
501-538
46
Fenton A. M., Stephens P. M., Crowley J., O'Callaghan M., O'Gara F..
Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer
a new biocontrol capability to a Pseudomonas strain.
Applied and Environmental Microbiology.
(1992);
58
3873-3878
47
Gaffney T. D., Lam S. T., Ligon J., Gates K., Frazelle A., DiMaio J., Hill S., Goodwin S.,
Torkewitz N., Allshouse A. M., Kempf H.-J., Becker J. O..
Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain.
Molecular Plant-Microbe Interactions.
(1994);
7
455-463
48
Gair R., Mathias P. L., Harvey P. N..
Studies on the cereal nematode populations and cereal yields under continuous or intensive
culture.
Annals of Applied Biology.
(1969);
63
503-512
49
Garbeva P., van Veen J. A., van Elsas J. D..
Microbial diversity in soil: selection of microbial populations by plant and soil
type and implications for disease suppressiveness.
Annual Review of Phytopathology.
(2004);
42
243-270
50
Gerlagh M..
Introduction of Ophiobolus graminis into new polders and its decline.
Netherlands Journal of Plant Pathology.
(1968);
74 (Suppl. 2)
1-97
51
Glick B. R..
The enhancement of plant growth by free-living bacteria.
Canadian Journal of Microbiology.
(1995);
41
109-117
52
Gould W. D., Hagedorn C., Bardinelli T. R., Zablotowicz M..
New selective media for enumeration and recovery of fluorescent pseudomonads from
various habitats.
Applied and Environmental Microbiology.
(1985);
49
28-32
53
Gurusiddaiah S., Weller D. M., Sarkar A., Cooks J. R..
Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp.
Antimicrobial Agents and Chemotherapy.
(1986);
29
488-495
54
Haas D., Défago G..
Biological control of soil-borne pathogens by fluorescent pseudomonads.
Nature Reviews Microbiology.
(2005);
3
307-319
55
Haas D., Keel C..
Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant diseases.
Annual Review of Phytopathology.
(2003);
41
117-153
56
Hammer P. E., Hill D. S., Lam S. T., van Pée K.-H., Ligon J. M..
Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin.
Applied and Environmental Microbiology.
(1997);
63
2147-2154
57
Handelsman J., Stabb E. V..
Biocontrol of soilborne plant pathogens.
Plant Cell.
(1996);
8
1855-1869
58
Harrison L. A., Letendre L., Kovacevich P., Pierson E. A., Weller D. M..
Purification of an antibiotic effective against Gaeumannomyce graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens .
Soil Biology and Biochemistry.
(1993);
25
215-221
60
Heeb S., Valverde C., Gigot-Bonnefoy C., Haas D..
Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism
and resistance to oxidative stress in Pseudomonas fluorescens CHA0.
FEMS Microbiology Letters.
(2005);
243
251-258
61
Hornby D..
Suppressive soils.
Annual Review of Phytopathology.
(1983);
21
65-85
62 Hornby D.. Take-All of Cereals: A Regional Perspective. Wallingford, UK; CAB International
(1998): 384
63
Huang Z., Bonsall R. F., Mavrodi D. V., Weller D. M., Thomashow L. S..
Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of
rhizoctonia root rot and in situ antibiotic production.
FEMS Microbiology Ecology.
(2004);
49
243-251
64
Iavicoli A., Boutet E., Buchala A., Métraux J. P..
Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0.
Molecular Plant-Microbe Interactions.
(2003);
16
851-858
65
Isnansetyo A., Cui L., Hiramatsu K., Kamei Y..
Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus .
International Journal of Antimicrobial Agents.
(2003);
22
545-547
66
Johnson K. B..
Dose-response relationships and inundative biological control.
Phytopathology.
(1994);
84
780-784
67
Johnson K. B., DiLeone J. A..
Effect of antibiosis on antagonist dose-plant disease response relationships for the
biological control of crown gall of tomato and cherry.
Phytopathology.
(1999);
89
974-980
68
Kamei Y., Isnansetyo A..
Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga.
International Journal of Antimicrobial Agents.
(2003);
21
71-74
69
Kay E., Dubuis C., Haas D..
Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0.
Proceedings of the National Academy of Sciences of the USA.
(2005);
102
17136-17141
70
Keel C., Schnider U., Maurhofer M., Voisard C., Burger D., Haas D., Défago G..
Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol.
Molecular Plant-Microbe Interactions.
(1992);
5
4-13
71
Keel C., Weller D. M., Natsch A., Defago G., Cook R. J., Thomashow L. S..
Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent
Pseudomonas strains from diverse geographic locations.
Applied and Environmental Microbiology.
(1996);
62
552-563
72
Kempf H.-J., Bauer P. H., Schroth M. N..
Herbicolin A associated with crown and roots of wheat after seed treatment with Erwinia herbicola B247.
Phytopathology.
(1993);
83
213-216
73
Kerry B. R..
Fungal parasites of cyst nematodes.
Agriculture, Ecosystems and Environment.
(1988);
24
293-295
74
Kim D.-S., Cook R. J., Weller D. M..
Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced
tillage.
Phytopathology.
(1997);
87
551-558
75
King E. O., Ward M. K., Raney D. E..
Two simple media for the demonstration of pyocianin and fluorescein.
Journal of Laboratory and Clinical Medicine.
(1954);
44
301-307
76
Kluepfel D. A..
The behavior and tracking of bacteria in the rhizosphere.
Annual Review of Phytopathology.
(1993);
31
441-472
77
Kraus J., Loper J. E..
Characterization of a genomic region required for production of the antibiotic pyoluteorin
by the biological control agent Pseudomonas fluorescens Pf-5.
Applied and Environmental Microbiology.
(1995);
61
849-854
78
Landa B. B., de Werd H. A. E., McSpadden-Gardener B. B., Weller D. M..
Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing
Pseudomonas fluorescens in the rhizosphere.
Phytopathology.
(2002 a);
92
129-137
79
Landa B. B., Mavrodi D. V., Thomashow L. S., Weller D. M..
Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat.
Phytopathology.
(2003);
93
982-994
80
Landa B. B., Mavrodi O. V., Raaijmakers J. M., McSpadden-Gardener B. B., Thomashow L. S.,
Weller D. M..
Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants.
Applied and Environmental Microbiology.
(2002 b);
68
3226-3237
81
Landa B. B., Mavrodi O. V., Schroeder K. L., Allende-Molar R., Weller D. M..
Enrichment and genotypic diversity of phlD -containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture.
FEMS Microbiology Ecology.
(2006);
55
351-368
82
Landa B. B., Navas-Cortés J. A., Hervás-Vargas A., Jiménez-Díaz R. M..
Influence of rhizosphere bacteria, temperature, and Fusarium oxysporum f. sp. ciceris inoculum density on suppression of Fusarium wilt of chickpea.
Phytopathology.
(2001);
91
807-816
83
Landa B. B., Navas-Cortés J. A., Jiménez-Díaz R. M..
Influence of temperature on plant-rhizobacteria interactions related to biocontrol
potential for suppression of fusarium wilt of chickpea.
Plant Pathology.
(2004);
53
341-352
84
Laursen J. B., Nielsen J..
Phenazine natural products: biosynthesis, synthetic analogues, and biological activity.
Chemical Reviews.
(2004);
104
1663-1685
85
Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D..
Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco.
Proceedings of the National Academy of Sciences of the USA.
(1992);
89
1562-1566
86
Lee E.-T., Kim S.-D..
An antifungal substance, 2,4-diacetylphloroglucinol, produced from antagonistic bacterium
Pseudomonas fluorescens 2112 against Phytophthora capsici . Kor. J.
Applied Microbiology and Biotechnology.
(2001);
29
37-42
87
Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J., Alabouvette C..
Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads.
Applied and Environmental Microbiology.
(1995);
61
1004-1012
88
Liu W. T., Marsh T. L., Cheng H., Forney L. J..
Characterization of microbial diversity by determining terminal restriction fragment
length polymorphisms of genes encoding 16S rRNA.
Applied and Environmental Microbiology.
(1997);
63
4516-4522
89
Lorang J. M., Anderson N. A., Laver F. I., Wildung D. K..
Disease decline in a Minnesota potato scab plot.
American Potato Journal.
(1989);
66
531
90
Lutz M. P., Wenger S., Maurhofer M., Défago G., Duffy B..
Signaling between bacterial and fungal biocontrol agents in a strain mixture.
FEMS Microbiology Ecology.
(2004);
48
447-455
91
Mahaffee W. F., Bauske E. M., van Vuurde J. W. L., van der Wolf M., van den Brink M.,
Kloepper J. W..
Comparative analysis of antibiotic resistance, immunofluorescent colony staining,
and a transgenic marker (bioluminescence) for monitoring the environmental fate of
a rhizobacterium.
Applied and Environmental Microbiology.
(1997);
63
1617-1622
92
Marschner P., Crowley D., Yang C. H..
Development of specific rhizosphere bacterial communities in relation to plant species,
nutrition and soil type.
Plant and Soil.
(2004);
261
199-208
93
Maurhofer M., Baehler E., Notz R., Martinez V., Keel C..
Cross talk between 2,4-diacetylophloroglucinol-producing biocontrol pseudomonads on
wheat roots.
Applied and Environmental Microbiology.
(2004);
70
1990-1998
94
Mavingui P., Laguerre G., Berge O..
Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere.
Applied and Environmental Microbiology.
(1992);
58
1894-1903
95
Mavrodi D. V., Blankenfeldt W., Thomashow L. S..
Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation.
Annual Review of Phytopathology.
(2006);
44
417-445
96
Mavrodi D. V., Bleimling N., Thomashow L. S., Blankenfeldt W..
The purification, crystallisation and preliminary structural characterisation of PhzF,
a key enzyme in the phenazine biosynthesis pathway from Pseudomonas fluorescens 2-79.
Acta Crystallographica.
(2004);
D60
184-186
97
Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S..
Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide
from Pseudomonas aeruginosa PA01.
Journal of Bacteriology.
(2001 a);
183
6454-6465
98
Mavrodi D. V., Ksenzenko V. N., Bonsall R. F., Cook R. J., Boronin A. M., Thomashow L. S..
A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79.
Journal of Bacteriology.
(1998);
180
2541-2548
99
Mavrodi D. V., Mavrodi O. V., McSpadden-Gardener B. B., Landa B. B., Weller D. M.,
Thomashow L. S..
Identification of differences in genome content among phlD -positive Pseudomonas fluorescens strains by using PCR-based subtractive hybridization.
Applied and Environmental Microbiology.
(2002);
68
5170-5176
100
Mavrodi O. V., McSpadden-Gardener B. B., Mavrodi D. V., Bonsall R. F., Weller D. M.,
Thomashow L. S..
Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp.
Phytopathology.
(2001 b);
91
35-43
101
Mazzola M..
Assessment and management of soil microbial community structure for disease suppression.
Annual Review of Phytopathology.
(2004);
42
35-59
102
Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson III. L. S..
Contribution of phenazine antibiotic biosynthesis to the ecological competence of
fluorescent pseudomonads in soil habitats.
Applied and Environmental Microbiology.
(1992);
58
2616-2624
103
Mazzola M., Fujimoto K., Thomashow L. S., Cook R. J..
Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat.
Applied and Environmental Microbiology.
(1995);
61
2554-2559
183
Mazzola M., Funnell D. L., Raaijmakers J. M..
Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing Pseudomonas species from resident soil populations.
Microbial Ecology.
(2004);
48
338-348
104
Mazzola M., Gu Y. H..
Impact of wheat cultivation on microbial communities from replant soils and apple
growth in greenhouse trials.
Phytopathology.
(2000);
90
114-119
105
McDonald M., Mavrodi D. V., Tomashow L. S., Floss H. G..
Phenazine biosynthesis in Pseudomonas fluorescens : branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic
acid.
Journal of the American Chemical Society.
(2001);
123
9459-9460
106
McSpadden Gardener B. B., Mavrodi D. V., Thomashow L. S., Weller D. M..
A rapid polymerase chain reaction-based assay characterizing rhizosphere populations
of 2,4-diacetylphloroglucinol-producing bacteria.
Phytopathology.
(2001);
91
44-54
107
McSpadden Gardener B. B., Schroeder K. L., Kalloger S. E., Raaijmakers J. M., Thomashow L. S.,
Weller D. M..
Genotypic and phenotypic diversity of phlD -containing Pseudomonas strains isolated from the rhizosphere of wheat.
Applied and Environmental Microbiology.
(2000);
66
1939-1946
108
McSpadden Gardener B. B., Weller D. M..
Changes in populations of rhizosphere bacteria associated with take-all disease of
wheat.
Applied and Environmental Microbiology.
(2001);
67
4414-4425
109
Menzies J. D..
Occurrence and transfer of a biological factor in soil that suppresses potato scab.
Phytopathology.
(1959);
49
648-652
110
Miller H. J., Henken G., van Veen J. A..
Variation and composition of bacterial populations in the rhizosphere of maize, wheat,
and grass cultivars.
Canadian Journal of Microbiology.
(1989);
35
656-660
111 Morgan J. A. W., Whipps J. M..
Methodological approaches to the study of rhizosphere carbon flow and microbial population
dynamics. Pinton, R., Varanini, Z., and Nannipieri, P., eds. The Rhizosphere: Biochemistry
and Organic Substances at the Soil-Plant Interface. New York; Marcel Dekker (2001):
373-409
112
Muyzer G., Smalla K..
Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient
gel electrophoresis (TGGE) in microbial ecology.
Antonie van Leeuwenhoek.
(1998);
73
127-141
113
Notz R., Maurhofer M., Dubach H., Haas D., Défago G..
Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat.
Applied and Environmental Microbiology.
(2002);
68
2229-2235
114
Nowak-Thompson B., Chaney N., Wing J. S., Gould S. J., Loper J. E..
Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5.
Journal of Bacteriology.
(1999);
181
2166-2174
115
Ownley B. H., Duffy B. K., Weller D. M..
Identification and manipulation of soil properties to improve the biological control
performance of phenazine-producing Pseudomonas fluorescens.
.
Applied and Environmental Microbiology.
(2003);
69
3333-3343
116
Ownley B. H., Weller D. M., Thomashow L. S..
Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79.
Phytopathology.
(1992);
82
178-184
117
Paulsen I. T., Press C., Ravel J., Kobayashi D. Y., Myers G. S. A., Mavrodi D. V.,
DeBoy R. T., Seshadri R., Ren Q., Madupu R., Dodson R. J., Durkin A. S., Brinkac L. M.,
Daugherty S. C., Sullivan S. A., Rosovitz M. J., Gwinn M. L., Zhou L., Nelson W. C.,
Weidman J., Watkins K., Tran K., Khouri H., Pierson E. A., Pierson III. L. S., Thomashow L. S.,
Loper J. E..
Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5: insights into the biological control of plant disease.
Nature Biotechnology.
(2005);
23
873-878
118
Pechy-Tarr M., Bottiglieri M., Mathys S., Lejbolle K. B., Schnider-Keel U., Maurhofer M.,
Keel C..
RpoN (sigma54) controls production of antifungal compounds and biocontrol activity
in Pseudomonas fluorescens CHA0.
Molecular Plant-Microbe Interactions.
(2005);
18
260-272
119
Pfender W. F., Kraus J., Loper J. E..
A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repens in wheat straw.
Phytopathology.
(1993);
83
1223-1228
120
Picard C., Bosco M..
Genetic diversity of phl D gene from 2,4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere.
FEMS Microbiology Letters.
(2003);
219
167-172
121
Picard C., Di Cello F., Ventura M., Fani R., Guckert A..
Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated
from the maize rhizosphere at different stages of plant growth.
Applied and Environmental Microbiology.
(2000);
66
948-955
122
Pierson E. A., Weller D. M..
Using rhizobacteria mixtures to improve the consistency and effectiveness of biological
control of take-all of wheat.
Phytopathology.
(1994);
84
940-947
123
Pierson III. L. S., Gaffney T., Lam S., Gong F..
Molecular analysis of genes encoding phenazine biosynthesis in the biological control
bacterium Pseudomonas aureofaciens 30-84.
FEMS Microbiology Letters.
(1995);
134
299-307
125
Pierson III. L. S., Thomashow L. S..
Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84.
Molecular Plant-Microbe Interactions.
(1992);
5
330-339
126
Price-Whelan A., Dietrich L. E., Newman D. K..
Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics.
Nature Chemical Biology.
(2006);
2
71-78
127
Raaijmakers J. M., Bonsall R. F., Weller D. M..
Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat.
Phytopathology.
(1999);
89
470-475
128
Raaijmakers J. M., van der Sluis I., Koster M., Bakker P. A. H. M., Weisbeek P. J.,
Schippers B..
Utilization of heterologous siderophores and rhizosphere competence of fluorescent
Pseudomonas spp.
Canadian Journal of Microbiology.
(1995);
41
126-135
129
Raaijmakers J. M., de Bruijn I., de Kock M. J. D..
Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation.
Molecular Plant-Microbe Interactions.
(2006);
19
699-710
130
Raaijmakers J. M., Vlami M., de Souza J. T..
Antibiotic production by bacterial biocontrol agents.
Antonie van Leeuwenhoek.
(2002);
81
537-547
131
Raaijmakers J. M., Weller D. M..
Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils.
Molecular Plant-Microbe Interactions.
(1998);
11
144-152
132
Raaijmakers J. M., Weller D. M..
Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96.
Applied and Environmental Microbiology.
(2001);
67
2545-2554
133
Raaijmakers J. M., Weller D. M., Thomashow L. S..
Frequency of antibiotic-producing Pseudomonas spp. in natural environments.
Applied and Environmental Microbiology.
(1997);
63
881-887
134
Ramette A., Moënne-Locoz Y., Défago G..
Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucoinol and
comparison of PhlD with plant polyketide synthases.
Molecular Plant-Microbe Interactions.
(2001);
14
639-652
135
Ramette A., Moënne-Locoz Y., Défago G..
Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or
hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root
rot.
FEMS Microbiology Ecology.
(2003);
44
35-43
136
Roget D. K..
Decline in root rot (Rhizoctonia solani AG‐8) in wheat in a tillage and rotation experiment at Avon, South Australia.
Australian Journal of Experimental Agriculture.
(1995);
35
1009-1013
137
Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E..
The sigma factor σs affects antibiotic production in Pseudomonas fluorescens Pf-5.
Proceedings of the National Academy of Sciences of the USA.
(1997);
92
12255-12259
138
Sarniguet A., Lucas P..
Evaluation of populations of fluorescent pseudomonads related to decline of take-all
patch on turfgrass.
Plant and Soil.
(1992);
145
11-15
139
Schnider U., Keel C., Blumer C., Troxler J., Défago G., Haas D..
Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities.
Journal of Bacteriology.
(1995);
177
5387-5392
140
Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C.,
Reimmann C., Notz R., Défago G., Haas D., Keel C..
Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin.
Journal of Bacteriology.
(2000);
182
1215-1225
141
Schroeder K., Raaijmakers J. M., Kalloger S. E., Mavrodi D. V., Thomashow L. S., Weller D. M..
Distribution of 2,4-diacetylphloroglucinol-producing Pseudomonas spp. with extended monoculture.
Phytopathology.
(1998);
88 (Suppl.)
S80
142
Shanahan P., O'Sullivan D. J., Simpson P., Glennon J. D., O'Gara F..
Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation
of physiological parameters influencing its production.
Applied and Environmental Microbiology.
(1992);
58
353-358
143
Shipton P. J..
Take-all in spring sown cereals under continuous cultivation; disease progress and
decline in relation to crop succession and nitrogen.
Annals of Applied Biology.
(1972);
71
33-46
144 Shipton P. J..
Take-all decline during cereal monoculture. Bruehl, G. W., ed. Biology and Control of Soil-Borne Plant Pathogens. St. Paul, Minnesota;
APS Press (1975): 137-144
145
Shipton P. J., Cook R. J., Sitton J. W..
Occurrence and transfer of a biological factor in soil that suppresses take-all of
wheat in eastern Washington.
Phytopathology.
(1973);
63
511-517
146
Simon A., Ridge E. H..
The use of ampicillin in a simplified selective medium for the isolation of fluorescent
pseudomonads.
Journal of Applied Bacteriology.
(1974);
37
459-460
147
Simon A., Sivasithamparam V..
Pathogen-suppression: a case study in biological suppression of Gaeumannomyces graminis var. tritici in soil.
Soil Biology and Biochemistry.
(1989);
20
263-264
148
Smiley R. W..
Wheat-rhizoplane pseudomonads as antagonists of Gaeumannomyces graminis .
Soil Biology and Biochemistry.
(1979);
11
371-376
149 Smirnov V. V., Kiprianova E. A.. Bacteria of Pseudomonas Genus. Kiev, Ukraine; Naukova Dumka (1990)
150
Smith K. P., Goodman R. M..
Host variation for interactions with beneficial plant-associated microbes.
Annual Review of Phytopathology.
(1999);
37
473-491
151
Smith K. P., Handelsman J., Goodman R. M..
Genetic basis in plants for interactions with disease-suppressive bacteria.
Proceedings of the National Academy of Sciences of the USA.
(1999);
96
4786-4790
152
Stutz E. W., Défago G., Kern H..
Naturally occurring fluorescent pseudomonads involved in suppression of black root
rot of tobacco.
Phytopathology.
(1986);
76
181-185
153 Thomashow L. S., Bonsall R. F., Weller D. M..
Antibiotic production by soil and rhizosphere microbes in situ,
. Hurst, C. J., Crawford, R. L., Knudsen, G. R., McInerney, M. J., and Stetzenbach,
L. D., eds. Manual of Environmental Microbiology, 2nd ed. Washington, D.C.; ASM Press
(2002): 636-647
154
Thomashow L. S., Weller D. M..
Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici .
Journal of Bacteriology.
(1988);
170
3499-3508
155 Thomashow L. S., Weller D. M..
Current concepts in the use of introduced bacteria for biological disease control:
mechanisms and antifungal metabolites. Stacey, G. and Keen, N., eds. Plant-Microbe Interactions, Vol. 1. New York; Chapman
and Hall Ltd. (1995): 187-235
156
Thomashow L. S., Weller D. M., Bonsall R. F., Pierson III. L. S..
Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat.
Applied and Environmental Microbiology.
(1990);
56
908-912
157
Turner J. M., Messenger A. J..
Occurrence, biochemistry and physiology of phenazine pigment production.
Advances in Microbial Physiology.
(1986);
27
211-275
158
Validov S., Mavrodi O., De La Fuente L., Boronin A., Weller D., Thomashow L., Mavrodi D..
Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp.
FEMS Microbiology Letters.
(2005);
242
249-256
159 van Loon L. C., Bakker P. A. H. M..
Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. Siddiqui, Z. A., ed. PGPR: Biocontrol and Biofertilization. Dordrecht, The Netherlands;
Springer (2005): 39-66
160
van Loon L. C., Bakker P. A. H. M., Pieterse C. M. J..
Systemic resistance induced by rhizosphere bacteria.
Annual Review of Phytopathology.
(1998);
36
453-483
161
Vincent M. N., Harrison L. A., Brackin J. M., Kovacevich P. A., Mukerji P., Weller D. M.,
Cook R. J..
Suppression of take-all of wheat by seed treatment with fluorescent pseudomonads.
Phytopathology.
(1991);
73
463-469
162
Wang C., Ramette A., Punjasamarnwong P., Zala M., Natsch A., Moënne-Loccoz Y., Défago G..
Cosmopolitan distribution of phlD -containing dicotyledonous crop-associated biocontrol pseudomonads of world wide origin.
FEMS Microbiology Ecology.
(2001);
37
105-116
163
Weller D. M..
Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all.
Phytopathology.
(1983);
73
1548-1553
164
Weller D. M..
Biological control of soilborne plant pathogens in the rhizosphere with bacteria.
Annual Review of Phytopathology.
(1988);
26
379-417
165
Weller D. M., Howie W. J., Cook R. J..
Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads.
Phytopathology.
(1988);
78
1094-1100
166
Weller D. M., van Pelt J. A., Mavrodi D. V., Pieterse C. M. J., Bakker P. A. H. M.,
van Loon L. C..
Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens .
Phytopathology.
(2004);
94
S108
167
Weller D. M., Raaijmakers J. M., McSpadden-Gardener B. B., Thomashow L. S..
Microbial populations responsible for specific soil suppressiveness to plant pathogens.
Annual Review of Phytopathology.
(2002);
40
309-348
168 Weller D. M., Thomashow L. S..
Current challenges in introducing beneficial microorganisms into the rhizosphere. O'Gara, F., Dowling, D. N., and Boesten, B., eds. Molecular Ecology of Rhizosphere
Microorganisms. Weinheim; VCH (1994): 1-18
169 Weller D. M., Thomashow L. S., Raaijmakers J. M..
The rhizosphere ecology of antibiotic-producing pseudomonads and their role in take-all
decline. Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., and Akino, S., eds.
Plant Growth-Promoting Rhizobacteria - Present Status and Future Prospects. Sapporo;
Nakanishi Printing (1997): 58-64
170
Weller D. M., Zhang B.-X., Cook R.J..
Application of a rapid screening test for selection of bacteria suppressive to take-all
of wheat.
Plant Disease.
(1985);
69
710-713
171
Westphal A., Becker J. O..
Biological supression and natural population decline of Heterodera sachachtii in a California field.
Phytopathology.
(1999);
89
434-440
172
Westphal A., Becker J. O..
Transfer of biological soil suppressiveness against Heterodera schachtii .
Phytopathology.
(2000);
90
401-406
173
Westphal A., Becker J. O..
Components of soil suppressiveness against Heterodera schachtii .
Soil Biology and Biochemistry.
(2001);
33
9-16
174
Whipps J. M..
Developments in the biological control of soilborne plant pathogens.
Advances in Botanical Research.
(1997);
26
1-134
175
Whipps J. M..
Microbial interactions and biocontrol in the rhizosphere.
Journal of Experimental Botany.
(2001);
52
487-511
176
Wieland G., Neumann R., Backhaus H..
Variation of microbial communities in soil, rhizosphere, and rhizoplane in response
to crop species, soil type, and crop development.
Applied and Environmental Microbiology.
(2001);
67
5849-5854
177
Wiseman B. M., Neate S. M., Keller K. O., Smith S. E..
Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its biological nature.
Soil Biology and Biochemistry.
(1996);
28
727-732
178
Whistler C. A., Corbell N. A., Sarniguet A., Ream W., Loper J. E..
The two-component regulators GacS and GacA influence accumulation of the stationary-phase
sigma factor sigma(S) and the stress response in Pseudomonas fluorescens Pf-5.
Journal of Bacteriology.
(1998);
180
6635-6641
179
Whistler C. A., Stockwell V. O., Loper J. E..
Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5.
Applied and Environmental Microbiology.
(2000);
66
2718-2725
180
Wilson M., Lindow S. E..
Ecological similarity and coexistance of epiphytic ice-nucleating (Ice+ ) Pseudomonas syringae strains and a non-ice-nucleating (Ice- ) biological control agent.
Applied and Environmental Microbiology.
(1994);
60
3128-3137
181
Yin B., Valinsky L., Gao X., Becker J. O., Borneman J..
Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic
nematode Heterodera schachtii .
Applied and Environmental Microbiology.
(2003 a);
69
1573-1580
182
Yin B., Valinsky L., Gao X., Becker J. O., Borneman J..
Identification of fungal rDNA associated with soil suppressiveness against Heterodera schachtii using oligonucleotide fingerprinting.
Phtopathology.
(2003 b);
93
1006-1013
D. M. Weller
USDA‐ARS Root Disease and Biological Control Research Unit Washington State University
P.O. Box 646430
367 Johnson Hall
Pullman, WA 99164-6430
USA
eMail: wellerd@wsu.edu
Review Editor: J. Raven