Subscribe to RSS
DOI: 10.1055/s-2006-927395
© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York
Inflammation, Damage Repair and Liver Fibrosis - Role of Cytokines and Different Cell Types
Entzündung, Gewebsreparatur und Leberfibrose - Rolle von Zytokinen und unterschiedlichen ZelltypenPublication History
manuscript received: 7.11.2006
manuscript accepted: 20.12.2006
Publication Date:
19 January 2007 (online)

Zusammenfassung
Die Leberfibrose ist definiert als exzessive Ablagerung von extrazellulärer Matrix. Sie stellt die Hauptkomplikation einer chronischen Leberschädigung dar und das Endstadium, die Leberzirrhose ist mit einer ausgeprägten Morbidität und Mortalität vergesellschaftet. Für die Akkumulation von extrazellulärer Matrix im Rahmen der Leberfibrose und Leberzirrhose sind unterschiedliche Zelltypen verantwortlich, die einen myofibroblastenähnlichen Phänotyp annehmen - die im Disse’schen Raum lokalisierten hepatischen Sternzellen, portale Fibroblasten und Myofibroblasten aus den periportalen und perizentralen Gebieten. Weitere Studien legen auch eine besondere Rolle von Myofibroblasten aus dem Knochenmark nahe. Obwohl Unterschiede zwischen den Zelltypen hinsichtlich myofibroblastischer Differenzierung, Aktivierung und „Deaktivierung” beschrieben wurden, ist in den meisten Fällen eine weitere Sicherung der Daten erforderlich, insbesondere im Hinblick auf biologische und biochemische Charakterisierung, ihre Interaktionen mit inflammatorischen Zellen und der Zytokinzusammensetzung, die zu ihrer Aktivierung oder ihrem Zelltod führt. Diese Daten sind essenziell, um die Mechanismen der fortschreitenden Entwicklung einer exzessiven Vernarbung in der Leber wie auch die Fähigkeit der Leber zur Gewebereparatur und Regenration zu verstehen. Nur so kann der Stellenwert von möglichen Behandlungsschemata zur spezifischen und effizienten Beeinflussung der Zellen, die für die Entwicklung einer Leberfibrose/Leberzirrhose wie auch für die Leberregeneration verantwortlich sind, abgeschätzt werden.
Abstract
Liver fibrosis is defined as an excessive deposition of extracellular matrix. It is the main complication of chronic liver damage and its endpoint, the liver cirrhosis, is responsible for impressive morbidity and mortality. The accumulation of extracellular matrix proteins in liver fibrosis and cirrhosis is due to different cell types which acquire a myofibroblastic phenotype - the hepatic stellate cells, located in the space of Disse, portal fibroblasts as well as myofibroblasts of the portal and pericentral areas. Further studies also suggest an impressive role of bone marrow-derived myofibroblasts. Differences have been reported between the two cell populations with respect to myofibroblastic differentiation, activation and “deactivation”, proliferation and apoptosis. However, in most cases additional confirmation may be required; thus the biological and biochemical characterization of these cells, their interactions with inflammatory cells and the cytokine environment leading to their activation or cell death are essential to understand the mechanisms underlying the progressive development of excessive scarring in the liver as well as the ability of the liver for tissue repair and regeneration. All this information is required to estimate the value of already suggested possible treatments to specifically and efficiently target the cells responsible for the development of liver fibrosis/cirrhosis and as well as for liver regeneration.
Schlüsselwörter
Leber - Fibrose - Zirrhose - HSC - Myofibroblasten - Zytokine
Key words
liver - fibrosis - cirrhosis - HSC - myofibroblasts - cytokines
References
- 1
Batusic D S, Armbrust T, Saile B. et al .
Induction of Mx-2 in rat liver by toxic injury.
J Hepatol.
2004;
40
446-453
MissingFormLabel
- 2
Knittel T, Mehde M, Kobold D. et al .
Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal
and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1.
J Hepatol.
1999;
30
48-60
MissingFormLabel
- 3
Neubauer K, Ritzel A, Saile B. et al .
Decrease of platelet-endothelial cell adhesion molecule 1-gene-expression in inflammatory
cells and in endothelial cells in the rat liver following CCl4-administration and
in vitro after treatment with TNFalpha.
Immunol Lett.
2000;
74
153-164
MissingFormLabel
- 4
Sewnath M E, Van Der P T, Van Noorden C J. et al .
Endogenous interferon gamma protects against cholestatic liver injury in mice.
Hepatology.
2002;
36
1466-1477
MissingFormLabel
- 5
Arii S, Imamura M.
Physiological role of sinusoidal endothelial cells and Kupffer cells and their implication
in the pathogenesis of liver injury.
J Hepatobiliary Pancreat Surg.
2000;
7
40-48
MissingFormLabel
- 6
Bhunchet E, Wake K.
Role of mesenchymal cell populations in porcine serum-induced rat liver fibrosis.
Hepatology.
1992;
16
1452-1473
MissingFormLabel
- 7
Salmi M, Adams D, Jalkanen S.
Cell adhesion and migration. IV. Lymphocyte trafficking in the intestine and liver.
Am J Physiol.
1998;
274
G1-G6
MissingFormLabel
- 8
Baldus S E, Zirbes T K, Weidner I C. et al .
Comparative quantitative analysis of macrophage populations defined by CD68 and carbohydrate
antigens in normal and pathologically altered human liver tissue.
Anal Cell Pathol.
1998;
16
141-150
MissingFormLabel
- 9
Sun Z, Wada T, Maemura K. et al .
Hepatic allograft-derived Kupffer cells regulate T cell response in rats.
Liver Transpl.
2003;
9
489-497
MissingFormLabel
- 10
Canbay A, Higuchi H, Bronk S F. et al .
Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis
and fibrosis.
Gastroenterology.
2002;
123
1323-1330
MissingFormLabel
- 11
Wisse E, Luo D, Vermijlen D. et al .
On the function of pit cells, the liver-specific natural killer cells.
Semin Liver Dis.
1997;
17
265-286
MissingFormLabel
- 12
Bioulac-Sage P, Kuiper J, Van Berkel T J. et al .
Lymphocyte and macrophage populations in the liver.
Hepatogastroenterology.
1996;
43
4-14
MissingFormLabel
- 13
Vanderkerken K, Bouwens L, Van Rooijen N. et al .
The role of Kupffer cells in the differentiation process of hepatic natural killer
cells.
Hepatology.
1995;
22
283-290
MissingFormLabel
- 14
Li X, Klintman D, Liu Q. et al .
Critical role of CXC chemokines in endotoxemic liver injury in mice.
J Leukoc Biol.
2004;
75
443-452
MissingFormLabel
- 15
Schumann J, Wolf D, Pahl A. et al .
Importance of Kupffer cells for T-cell-dependent liver injury in mice.
Am J Pathol.
2000;
157
1671-1683
MissingFormLabel
- 16
Bertolino P, McCaughan G W, Bowen D G.
Role of primary intrahepatic T-cell activation in the “liver tolerance effect”.
Immunol Cell Biol.
2002;
80
84-92
MissingFormLabel
- 17
Muhlen K A, Schumann J, Wittke F. et al .
NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A-induced
hepatotoxicity in mice.
J Immunol.
2004;
172
3034-3041
MissingFormLabel
- 18
Crispe I N, Dao T, Klugewitz K. et al .
The liver as a site of T-cell apoptosis: graveyard, or killing field?.
Immunol Rev.
2000;
174
47-62
MissingFormLabel
- 19
Safadi R, Ohta M, Alvarez C E. et al .
Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic
interleukin-10 from hepatocytes.
Gastroenterology.
2004;
127
870-882
MissingFormLabel
- 20
Smith C I, Cooksley W G, Powell L W.
Cell-mediated immunity to liver antigen in toxic liver injury. II. Role in pathogenesis
of liver damage.
Clin Exp Immunol.
1980;
39
618-625
MissingFormLabel
- 21
Warnatz H, Scheiffarth F, Schmeissner R.
Studies on the cytotoxic effect of in vivo and in vitro immunized lymphocytes on liver
target cells.
Clin Exp Immunol.
1975;
21
250-258
MissingFormLabel
- 22
Finotto S, Siebler J, Hausding M. et al .
Severe hepatic injury in interleukin 18 (IL-18) transgenic mice: a key role for IL-18
in regulating hepatocyte apoptosis in vivo.
Gut.
2004;
53
392-400
MissingFormLabel
- 23
Ramadori G, Moebius U, Dienes H P. et al .
Lymphocytes from hepatic inflammatory infiltrate kill rat hepatocytes in primary culture.
Comparison with peripheral blood lymphocytes.
Virchows Arch B Cell Pathol Incl Mol Pathol.
1990;
59
263-270
MissingFormLabel
- 24
Novobrantseva T I, Majeau G R, Amatucci A. et al .
Attenuated liver fibrosis in the absence of B cells.
J Clin Invest.
2005;
115
3072-3082
MissingFormLabel
- 25
Xue H, McCauley R L, Zhang W.
Elevated interleukin-6 expression in keloid fibroblasts.
J Surg Res.
2000;
89
74-77
MissingFormLabel
- 26
Choi I, Kang H S, Yang Y. et al .
IL-6 induces hepatic inflammation and collagen synthesis in vivo.
Clin Exp Immunol.
1994;
95
530-535
MissingFormLabel
- 27
Natsume M, Tsuji H, Harada A. et al .
Attenuated liver fibrosis and depressed serum albumin levels in carbon tetrachloride-treated
IL-6-deficient mice.
J Leukoc Biol.
1999;
66
601-608
MissingFormLabel
- 28
Bansal M B, Kovalovich K, Gupta R. et al .
Interleukin-6 protects hepatocytes from CCl4-mediated necrosis and apoptosis in mice
by reducing MMP-2 expression.
J Hepatol.
2005;
42
548-556
MissingFormLabel
- 29
Bot A.
Immunoglobulin deficient mice generated by gene targeting as models for studying the
immune response.
Int Rev Immunol.
1996;
13
327-340
MissingFormLabel
- 30
Zhou X, Tan F K, Milewicz D M. et al .
Autoantibodies to fibrillin-1 activate normal human fibroblasts in culture through
the TGF-beta pathway to recapitulate the “scleroderma phenotype”.
J Immunol.
2005;
175
4555-4560
MissingFormLabel
- 31
Neubauer K, Knittel T, Armbrust T. et al .
Accumulation and cellular localization of fibrinogen/fibrin during short-term and
long-term rat liver injury.
Gastroenterology.
1995;
108
1124-1135
MissingFormLabel
- 32
Romero-Gomez M, Montes-Cano M A, Otero-Fernandez M A. et al .
SLC11A1 promoter gene polymorphisms and fibrosis progression in chronic hepatitis
C.
Gut.
2004;
53
446-450
MissingFormLabel
- 33
Bataller R, North K E, Brenner D A.
Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal.
Hepatology.
2003;
37
493-503
MissingFormLabel
- 34
Ramadori G, Saile B.
Portal tract fibrogenesis in the liver.
Lab Invest.
2004;
84
153-159
MissingFormLabel
- 35
Reeves H L, Friedman S L.
Activation of hepatic stellate cells - a key issue in liver fibrosis.
Front Biosci.
2002;
7
d808-d826
MissingFormLabel
- 36
Marra F, Romanelli R G, Giannini C. et al .
Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells.
Hepatology.
1999;
29
140-148
MissingFormLabel
- 37
Kinnman N, Hultcrantz R, Barbu V. et al .
PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic
liver injury.
Laboratory Investigation.
2000;
80
697-707
MissingFormLabel
- 38
Knittel T, Kobold D, Saile B. et al .
Rat liver myofibroblasts and hepatic stellate cells: different cell populations of
the fibroblast lineage with fibrogenic potential.
Gastroenterology.
1999;
117
1205-1221
MissingFormLabel
- 39
Lorena D, Darby I A, Reinhardt D P. et al .
Fibrillin-1 expression in normal and fibrotic rat liver and in cultured hepatic fibroblastic
cells: Modulation by mechanical stress and role in cell adhesion.
Lab Invest.
2004;
84
203-212
MissingFormLabel
- 40
Dubuisson L, Lepreux S, Bioulac-Sage P. et al .
Expression and cellular localization of fibrillin-1 in normal and pathological human
liver.
J Hepatol.
2001;
34
514-522
MissingFormLabel
- 41
Friedman S L.
Stellate cells: A moving target in hepatic fibrogenesis.
Hepatology.
2004;
40
1041-1043
MissingFormLabel
- 42
Magness S T, Bataller R, Yang L. et al .
A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic
cell populations.
Hepatology.
2004;
40
1151-1159
MissingFormLabel
- 43
Knittel T, Kobold D, Piscaglia F. et al .
Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased
rat livers: distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair.
Histochem Cell Biol.
1999;
112
387-401
MissingFormLabel
- 44
Dudas J, Saile B, El Armouche H. et al .
Endoreplication and polyploidy in primary culture of rat hepatic stellate cells.
Cell Tissue Res.
2003;
313
301-311
MissingFormLabel
- 45
Saile B, Knittel T, Matthes N. et al .
CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating
uncontrolled hepatic stellate cell proliferation during hepatic tissue repair.
Am J Pathol.
1997;
151
1265-1272
MissingFormLabel
- 46
Saile B, Matthes N, Knittel T. et al .
Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis
and proliferation of activated rat hepatic stellate cells.
Hepatology.
1999;
30
196-202
MissingFormLabel
- 47
Saile B, Matthes N, Neubauer K. et al .
Rat liver myofibroblasts and hepatic stellate cells differ in CD95-mediated apoptosis
and response to TNF-alpha.
Am J Physiol Gastrointest Liver Physiol.
2002;
283
G435-G444
MissingFormLabel
- 48
Saile B, DiRocco P, Dudas J. et al .
IGF-I induces DNA synthesis and apoptosis in rat liver hepatic stellate cells (HSC)
but DNA synthesis and proliferation in rat liver myofibroblasts (rMF).
Lab Invest.
2004;
84
1037-1049
MissingFormLabel
- 49
Kinnman N, Goria O, Wendum D. et al .
Hepatic stellate cell proliferation is an early platelet-derived growth factor-mediated
cellular event in rat cholestatic liver injury.
Lab Invest.
2001;
81
1709-1716
MissingFormLabel
- 50
Kinnman N, Francoz C, Barbu V. et al .
The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic
stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis.
Lab Invest.
2003;
83
163-173
MissingFormLabel
- 51
Tuchweber B, Desmouliere A, Bochaton-Piallat M L. et al .
Proliferation and phenotypic modulation of portal fibroblasts in the early stages
of cholestatic fibrosis in the rat.
Lab Invest.
1996;
74
265-278
MissingFormLabel
- 52
Kinnman N, Housset C.
Peribiliary myofibroblasts in biliary type liver fibrosis.
Front Biosci.
2002;
7
d496-d503
MissingFormLabel
- 53
Desmouliere A, Darby I, Costa A M. et al .
Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation
during the initial stages of cholestatic fibrosis in the rat.
Lab Invest.
1997;
76
765-778
MissingFormLabel
- 54
Slott P A, Liu M H, Tavoloni N.
Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction
in the rat.
Gastroenterology.
1990;
99
466-477
MissingFormLabel
- 55
Sedlaczek N, Jia J D, Bauer M. et al .
Proliferating bile duct epithelial cells are a major source of connective tissue growth
factor in rat biliary fibrosis.
Am J Pathol.
2001;
158
1239-1244
MissingFormLabel
- 56
Bhunchet E, Wake K.
Role of mesenchymal cell populations in porcine serum-induced rat liver fibrosis.
Hepatology.
1992;
16
1452-1473
MissingFormLabel
- 57
Andrade Z A, Guerret S, Fernandes A L.
Myofibroblasts in schistosomal portal fibrosis of man.
Mem Inst Oswaldo Cruz.
1999;
94
87-93
MissingFormLabel
- 58
Desmouliere A, Guyot C, Gabbiani G.
The stroma reaction myofibroblast: a key player in the control of tumor cell behavior.
Int J Dev Biol.
2004;
48
509-517
MissingFormLabel
- 59
Jahoda C A, Reynolds A J.
Hair follicle dermal sheath cells: unsung participants in wound healing.
The Lancet.
2001;
358
1445-1448
MissingFormLabel
- 60
Forbes S J, Russo F P, Rey V. et al .
A significant proportion of myofibroblasts are of bone marrow origin in human liver
fibrosis.
Gastroenterology.
2004;
126
955-963
MissingFormLabel
- 61
Abe R, Donnelly S C, Peng T. et al .
Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites.
J Immunol.
2001;
166
7556-7562
MissingFormLabel
- 62
Russo F P, Alison M R, Bigger B W. et al .
The bone marrow functionally contributes to liver fibrosis.
Gastroenterology.
2006;
130
1807-1821
MissingFormLabel
- 63
Quan T E, Cowper S, Wu S P. et al .
Circulating fibrocytes: collagen-secreting cells of the peripheral blood.
Int J Biochem Cell Biol.
2004;
36
598-606
MissingFormLabel
- 64
Kisseleva T, Uchinami H, Feirt N. et al .
Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis.
J Hepatol.
2006;
45
429-438
MissingFormLabel
- 65
Czaja M J, Flanders K C, Biempica L. et al .
Expression of tumor necrosis factor-alpha and transforming growth factor-beta 1 in
acute liver injury.
Growth Factors.
1989;
1
219-226
MissingFormLabel
- 66
Nakatsukasa H, Nagy P, Evarts R P. et al .
Cellular distribution of transforming growth factor-beta 1 and procollagen types I,
III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis.
J Clin Invest.
1990;
85
1833-1843
MissingFormLabel
- 67
Bissell D M, Wang S S, Jarnagin W R. et al .
Cell-specific expression of transforming growth factor-beta in rat liver. Evidence
for autocrine regulation of hepatocyte proliferation.
J Clin Invest.
1995;
96
447-455
MissingFormLabel
- 68
Davis B H.
Transforming growth factor beta responsiveness is modulated by the extracellular collagen
matrix during hepatic Ito cell culture.
J Cell Physiol.
1988;
136
547-553
MissingFormLabel
- 69
Czaja M J, Weiner F R, Flanders K C. et al .
In vitro and in vivo association of transforming growth factor-beta 1 with hepatic
fibrosis.
J Cell Biol.
1989;
108
2477-2482
MissingFormLabel
- 70
Pinzani M, Gesualdo L, Sabbah G M. et al .
Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis
and growth of cultured rat liver fat-storing cells.
J Clin Invest.
1989;
84
1786-1793
MissingFormLabel
- 71
Gressner A M.
Hepatic fibrogenesis: the puzzle of interacting cells, fibrogenic cytokines, regulatory
loops, and extracellular matrix molecules.
Z Gastroenterol.
1992;
30 (Suppl 1)
5-16
MissingFormLabel
- 72
Dooley S, Hamzavi J, Breitkopf K. et al .
Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats.
Gastroenterology.
2003;
125
178-191
MissingFormLabel
- 73
Pinzani M, Marra F, Carloni V.
Signal transduction in hepatic stellate cells.
Liver.
1998;
18
2-13
MissingFormLabel
- 74
Schonherr E, Hausser H J.
Extracellular matrix and cytokines: a functional unit.
Dev Immunol.
2000;
7
89-101
MissingFormLabel
- 75
Schuppan D, Ruehl M, Somasundaram R. et al .
Matrix as a modulator of hepatic fibrogenesis.
Semin Liver Dis.
2001;
21
351-372
MissingFormLabel
- 76
Friedman S L.
The virtuosity of hepatic stellate cells.
Gastroenterology.
1999;
117
1244-1246
MissingFormLabel
- 77
Gaca M D, Zhou X, Issa R. et al .
Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated
rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate
cells.
Matrix Biol.
2003;
22
229-239
MissingFormLabel
- 78
Sohara N, Znoyko I, Levy M T. et al .
Reversal of activation of human myofibroblast-like cells by culture on a basement
membrane-like substrate.
J Hepatol.
2002;
37
214-221
MissingFormLabel
- 79
Ramadori G, Saile B.
Mesenchymal cells in the liver - one cell type or two?.
Liver.
2002;
22
283-294
MissingFormLabel
- 80
Kim W H, Matsumoto K, Bessho K. et al .
Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth
factor leads to resolution from liver cirrhosis.
Am J Pathol.
2005;
166
1017-1028
MissingFormLabel
- 81
Sancho-Bru P, Bataller R, Gasull X. et al .
Genomic and functional characterization of stellate cells isolated from human cirrhotic
livers.
J Hepatol.
2005;
43
272-282
MissingFormLabel
- 82
Inside Lab Invest.
Lab Invest.
2004;
84
149-150
MissingFormLabel
- 83
Cassiman D, Libbrecht L, Desmet V. et al .
Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.
J Hepatol.
2002;
36
200-209
MissingFormLabel
- 84
Cassiman D, Roskams T.
Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate
cell research.
J Hepatol.
2002;
37
527-535
MissingFormLabel
- 85
Geerts A.
On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal?.
J Hepatol.
2004;
40
331-334
MissingFormLabel
- 86
Cassiman D, Barlow A, Vander B S. et al .
Hepatic stellate cells do not derive from the neural crest.
J Hepatol.
2006;
44
1098-1104
MissingFormLabel
- 87
Cassiman D, Roskams T, PJ. et al .
Alpha B-crystallin expression in human and rat hepatic stellate cells.
J Hepatol.
2001;
35
200-207
MissingFormLabel
- 88
Dudas J van, Mansuroglu T, Saile B. et al .
Comparison of Thy-1 expression in human liver cirrhosis and different models of rat
liver injury.
Z Gastroenterol.
2006;
54
86
MissingFormLabel
- 89
Uchio K, Tuchweber B, Manabe N. et al .
Cellular retinol-binding protein-1 expression and modulation during in vivo and in
vitro myofibroblastic differentiation of rat hepatic stellate cells and portal fibroblasts.
Lab Invest.
2002;
82
619-628
MissingFormLabel
- 90
Lepreux S, Bioulac-Sage P, Gabbiani G. et al .
Cellular retinol-binding protein-1 expression in normal and fibrotic/cirrhotic human
liver: different patterns of expression in hepatic stellate cells and (myo)fibroblast
subpopulations.
J Hepatol.
2004;
40
774-780
MissingFormLabel
- 91
Dranoff J A, Kruglov E A, Robson S C. et al .
The ecto-nucleoside triphosphate diphosphohydrolase NTPDase2/CD39L1 is expressed in
a novel functional compartment within the liver.
Hepatology.
2002;
36
1135-1144
MissingFormLabel
- 92 Wanless I R, Crawford J M. Cirrhosis; Surgical pathology of the GI tract, liver, biliary tract, and pancreas. Philadelphia; Saunders 2004: 863-884
MissingFormLabel
- 93
Gall E A, Dobrogorski O.
Hepatic alterations in obstructive jaundice.
Am J Clin Pathol.
1964;
41
126-139
MissingFormLabel
- 94
Iredale J P, Benyon R C, Pickering J. et al .
Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell
apoptosis and reduced hepatic expression of metalloproteinase inhibitors.
J Clin Invest.
1998;
102
538-549
MissingFormLabel
- 95
Murphy F R, Issa R, Zhou X. et al .
Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of
metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition.
Implications for reversibility of liver fibrosis.
J Biol Chem.
2002;
277
11 069-11 076
MissingFormLabel
- 96
Issa R, Zhou X, Constandinou C M. et al .
Spontaneous recovery from micronodular cirrhosis: Evidence for incomplete resolution
associated with matrix cross-linking.
Gastroenterology.
2004;
126
1795-1808
MissingFormLabel
- 97
Birns M, Masek B, Uerbach O.
The effects of experimental acute biliary obstruction and release on the rat liver.
A histochemical study.
Am J Pathol.
1962;
40
95-111
MissingFormLabel
- 98
Hammel P, Couvelard A, O’Toole D. et al .
Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis
and stenosis of the common bile duct.
N Engl J Med.
2001;
344
418-423
MissingFormLabel
- 99
Costa A M, Tuchweber B, Lamireau T. et al .
Role of apoptosis in the remodeling of cholestatic liver injury following release
of the mechanical stress.
Virchows Arch.
2003;
442
372-380
MissingFormLabel
- 100
Desmet V J, Roskams T.
Cirrhosis reversal: a duel between dogma and myth.
J Hepatol.
2004;
40
860-867
MissingFormLabel
- 101
Pol S, Carnot F, Nalpas B. et al .
Reversibility of hepatitis C virus-related cirrhosis.
Hum Pathol.
2004;
35
107-112
MissingFormLabel
- 102
Wanless I R, Nakashima E, Sherman M.
Regression of human cirrhosis: Morphologic features and the genesis of incomplete
septal cirrhosis.
Arch Pathol & Lab Medicine.
2000;
124
1599-1607
MissingFormLabel
- 103
Parsons C J, Bradford B U, Pan C Q. et al .
Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established
liver fibrosis in rats.
Hepatology.
2004;
40
1106-1115
MissingFormLabel
- 104
Lotersztajn S, Julien B, Teixeira-Clerc F. et al .
Hepatic fibrosis: Molecular mechanisms and drug targets.
Ann Rev Pharmacol & Toxicol.
2005;
45
605-628
MissingFormLabel
- 105
Beljaars L, Meijer D K, Poelstra K.
Targeting hepatic stellate cells for cell-specific treatment of liver fibrosis.
Front Biosci.
2002;
7
e214-e222
MissingFormLabel
- 106
Garcia-Banuelos J, Siller-Lopez F, Miranda A. et al .
Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade
adenoviral vectors. Evidence of cirrhosis reversion.
Gene Ther.
2002;
9
127-134
MissingFormLabel
- 107
Sakaida I, Terai S, Yamamoto N. et al .
Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice.
Hepatology.
2004;
40
1304-1311
MissingFormLabel
PD Dr. B. Saile
Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University,
Göttingen
Robert-Koch-Straße 40
37075 Göttingen
Germany
Phone: ++49/5 51/39 63 33
Fax: ++49/5 51/39 82 79
Email: bsaile@gwdg.de