Zusammenfassung
Die Leitgeschwindigkeit der Erregung entlang von Muskelfasern (CV) wurde an 20 gesunden
Versuchspersonen (10 Männer und 10 Frauen) im Alter zwischen 24 und 45 Jahren im Musculus
biceps brachii unter Verwendung von niveaugetriggerter Mittelung im Interferenz-EMG
bei Ableitung mit verzweigten und monopolaren Oberflächenelektroden gemessen. Die
CV von Kindern wurde an 90 gesunden Kleinkindern im Alter von bis zu fünf Jahren untersucht.
43 Neugeborene mit Lähmungen des brachialen Plexus (BPP) (mäßig bis schwer), wurden
ebenfalls untersucht. Die gemessene CV war bei unschiedlicher, willkürlicher Muskelanspannung
(10, 25, 50 und 75 % der maximalen willkürlichen Anspannung MVC) unter Ableitung mit
monopolaren gegenüber verzweigten Elektroden bei allen untersuchten gesunden Probanden
gleich. Bei 50 und 75 % MVC war die CV signifikant höher als bei 10 und 25 % MVC.
Bei verzweigten, gemittelten Potenzialen (AvPs) war die positive Endphase unterdrückt.
Die monopolaren AvPs glichen in ihrem Kurvenverlauf den Aktionspotenzialen motorischer
Einheiten. Die Parameter der verschiedenen Potenzialphasen (unter Einschluss der positiven
Endphase) könnten Zusatzinformationen über den Funktionsstatus von Muskeln liefern.
Die CV der gesunden Kinder nahm langsam mit dem Alter zu (von 1,56 ± 0,22 m/s auf
3,26 ± 0,30 m/s). Der Leitgeschwindigkeitswert korrelierte signifikant mit dem Alter.
Bei Neugeborenen mit BPP war die Leitgeschwindigkeit im paretischen Arm höher und
blieb bei der schweren Form von BPP während der Rekonvaleszenzphase eines Jahres signifikant
erhöht. Diese Befunde können durch Erholung, vor allem von schnellen und großen motorischen
Einheiten erklärt werden, die eine höhere CV besitzen. Zusammenfassend zeigt sich
die niveaugetriggerte Mittelung des Interferenz-EMGs durch Ableitung mit verzweigten
Elektroden als adäquate, nicht invasive Methode, um die Fortleitungsgeschwindigkeit
der Erregung entlang der Muskelfasern zu messen und einen veränderten Funktionszustand
der Muskeln zu erfassen.
Abstract
In 20 healthy subjects (10 males and 10 females) aged between 24 and 45 years, the
conduction velocity of excitation along muscle fibers (CV) was measured in biceps
brachii muscle using level averaging of interference EMG recorded by branched and
monopolar surface electrodes. The CV in children was investigated in 90 healthy infants
aged up to 5 years. 43 newborns with brachial plexus palsy (BPP) (moderate and severe)
was investigated, too. The measured CV, recorded with both monopolar and branched
electrodes were significant equal (p > 0.05) at all different muscle tension (10,
25, 50 and 75 % of MVC) and for all investigated healthy subjects. The CV was significant
higher (p < 0.05) at 50 and 75 % compared to 10 and 25 % of MVC. In branched averaged
potentials (AvPs) the terminal positive phase was suppressed. The monoplar AvPs were
with waveform similar to those of motor units potentials and the parameters of the
different potential's phases (including the terminal positive one) may give additional
information for functional state of muscles. CV of healthy infants increased gradually
with their age (from 1.56 ± 0.22 m/s to 3.26 ± 0.30 m/s). The value of CV depended
significantly on the age. In newborns BPP the CV was higher in paretic arm and remains
significantly higher (sever BPP) during the recovering period of one year. These findings
may be explained with recovering predominantly of fast and large MUs, which have a
higher CV. In conclusion, the level-triggered averaging of the interference EMG recorded
from the skin surface by branched electrodes is an adequate noninvasive method for
the measurement of the propagation velocity of excitation along the muscle fibers
and for evaluation of changed muscle functional state.
Key words
Muscle physiology - surface EMG - muscle fiber conduction velocity - plexus paresis
- interference EMG - multiple electrodes - experimental neurophysiology
Literatur
1
Bigland-Ritchie B, Donovan E F, Roussos C S.
Conduction velocity and EMG spectrum changes in fatigue of sustained maximal efforts.
J Appl Physiol.
1981;
51
1300-1305
2
Kostov K, Kossev A, Gydikov A.
Utilization of the stimulated electromyogram for estimation of the functional state
of the muscles.
Electromyogr Clin Neurophysiol.
1984;
24
387-399
3
Luca C J De.
Myoelectric manifestation of localized muscular fatigue in humans.
Crit Rev Biomed Eng.
1984;
11
251-279
4
Gydikov A, Kossev A, Kostov K, Kosarov D.
Estimation of the spreading velocity and the parameters of the muscle potentials by
averaging of the summated electromyogram.
Electromyogr Clin Neurophysiol.
1984;
24 (3)
191-212
5
Morimoto S, Masuda M.
Dependence of conduction velocity on spine interval during voluntary muscular contraction
in human motor units.
Eur J Appl Physiol.
1984;
53
191-195
6
Christova L, Gydikov A, Aslanova I, Kirenskaya A, Kozlova V, Kozlovskaya I.
Effect of immerssion hypokinesia on some parameters of human muscle potentials.
Kossm Biol Aviokos Med.
1986;
6
27-33
7
Christova L, Gydikov A, Aslanova I, Belyaeva M, Kirenskaya A, Kozlova V, Kozlovskaya I.
The effect of water immerssion on motor unit potentials in man.
Kossm Biol Aviokos Med.
1988;
4
39-43
8
Enoka R M, Robinson G A, Kossev A R.
Task and fatigue effects on low-threshold motor units in human hand muscle.
J Neurophysiol.
1989;
62
1344-1359
9 Christova P, Kossev A, Chichov V.
Single motor unit activity during fatiguing ramp-and-hold voluntary isometric contraction. In: Cantchev GN, Gurfinkel VS, Stuart DG et al. (eds) Proceedings of the VIIIth International Symposium on Motor Control. Sofia; Academic Publishing House Prof.
M. Drinov 1996: 216-219
10
Christova P, Kossev A, Kristev I, Chichov V.
Surface EMG recorded by branched electrodes during sustained muscle activity.
J Electromyogr Kinesiol.
1999;
9 (4)
263-276
11
Kristev I, Christova P, Chichov V, Kossev A.
Surface EMG changes during sustained maximal contraction efforts.
Comt r Acad bulg Sci.
2000;
53 (11)
55-58
12
Kristev I, Christova P, Chichov V, Kossev A.
Surface EMG changes during sustained submaximal high contractions.
Comt r Acad bulg Sci.
2000;
53 (12)
73-76
13
Christova P, Kossev A.
Human motor unit recruitment and derecruitment during long lasting intermittent contractions.
J Electromyogr Kinesiol.
2001;
11
189-196
14
Christova P, Kossev A.
Motor unit activity during long-lasting intermittent muscle contractions in humans.
Eur J Appl Physiol.
1998;
77 (4)
3379-3387
15
Gantchev N, Kossev A, Gydikov A, Gerasimenko Y.
Relation between the motor units recruitment threshold and their potentials propagation
velocity at isometric activity.
Electromyogr Clin Neurophysiol.
1992;
32
221-228
16 Christova P, Kossev A.
Human motor unit recruitment and derecruitment during long lasting intermittent contractions. In: Christensen H, Sjøgaard G (eds) PROCID Symposium, Muscular disorders in computer
users. Copenhagen; 1999: 94-100
17
Stallberg E.
Propagation velocity in human muscle fibre in situ.
Acta Physiol Scand.
1966;
70
1-112
18
Dimitrov G, Dimitrova N.
Extracellular potential field of a single striated muscle fibre immersed in anisotropic
volume conductor.
Electromyogr clin Neurophysiol.
1974;
14
423-436
19
Dimitrova N, Dimitrov G.
Extracellular potential field of a single striated muscle fibre.
Electromyogr clin Neurophysiol.
1974;
14
279-292
20
Luca C J De, Merletti R.
Surface myoelectric signal cross-talk among muscles of the leg.
Electroencephalogr clin Neurophysiol.
1987;
69
568-575
21
Broman H, Bilotto G, Luca C J De.
A note on the noninvasive estimation of muscle fiber conduction velocity.
IEEE Trans.
1985;
BME-32
341-344
22
Reucher H, Rau G, Silny J.
Spatial filtering of non-invasive multielectrode EMG: Part I - Introduction to measuring
technique and applications.
IEEE Trans.
1987;
BME-34
98-105
23 Chichov V, Kossev A, Christova P, Chobanova M.
Conduction velocity and turn-amplitude analysis during sustained muscle contraction. In: Cantchev GN, Gurfinkel VS, Stuart DG et al (eds) Proceedings of the VIIIth International Symposium on Motor Control. Sofia; Academic Publishing House Prof.
M. Drinov 1996: 212-215
24
Gydikov A, Kossev A, Trayanova N, Radicheva N.
Selective recording of motor unit potentials.
Electromyogr clin Neurophysiol.
1986;
26
273-281
25
Gydikov A, Kosarov D, Kossev A, Kostov K, Trayanova N, Radicheva N.
Motor unit potentials at high muscle activity recorded by selective electrodes.
Biomed Biochim Acta.
1986;
45
S63-S68
26
Kossev A R, Lansing R, Andersen A.
Single motor unit activity in human nasal muscles.
Comt r Acad bulg Sci.
1988;
41 (3)
77-80
27
Kossev A, Gydikov A, Trayanova N, Kosarov D.
Configuration and selectivity of the branched EMG-electrodes.
Electromyogr clin Neurophysiol.
1988;
28
397-403
28
Enoka R M, Robinson G A, Kossev A R.
A stable, selective electrode for recording single motor-unit potentials in humans.
Exp Neurol.
1988;
99
761-764
29
Kristev I, Christova P, Christova L, Kossev A.
Branched surface EMG electrodes and measurement of propagation velocity of exitation
along muscle fibres.
Biomedizinische Technik.
2000;
45, 2
233-239
30
Koh T, Grabiner M.
Evaluation of methods to minimize cross talk in surface electromyography.
J Biomechanics.
1993;
26
151-157
31
Buchthal F, Guld C, Rosenfalck P.
Propagation velocity in electrically activated muscle fibres in man.
Acta Physiol Scand.
1955;
34
75-89
32
Cruz Martinez A, Lopez Terradas J M.
Conduction velocity along muscle fibers in situ in healthy infants.
Electromyogr clin Neurophysiol.
1990;
30 (7)
443-448
33
Ramaekers V T, Disselhorst-Klug C, Schneider J, Silny J, Forst J, Forst R, Kotlarek F,
Rau G.
Clinical application of a noninvasive multi-electrode array EMG for the recording
of single motor unit activity.
Neuropediatrics.
1993;
24 (3)
134-138
34
Malmstrom J E, Lindstrom L.
Propagation velocity of muscle action potentials in the growing normal child.
Muscle & Nerve.
1997;
20
403-410
35
Arabadziev T I, Dimitrov G V, Dimitrova N.
Simulation analysis of the ability to estimate motor unit propagation velocity non-invasively
by different two-channel methods and types of multi-electrodes.
J Electromyogr Kinesiol.
2003;
13 (5)
403-415
36
Brooke M H, Engel W K.
The histographic analysis of human biopsies with regard to fiber types.
Children's biopsies Neurology (Minneap).
1969;
19
591-605
37
Aherne W, Ayyar D R, Clarke P A, Walton J N.
Muscle fibre size in normal infants, children and adolescents.
J of the Neurological Science.
1971;
14
171-182
38
Cruz Martinez A, Arpa J.
Muscle fiber conduction velocity in situ (MFCV) in denervation, reinnervation and
disuse atrophy.
Acta Neurol Scand.
1999;
100 (5)
337-340
39
Hoeven J H Van der, Zwarts M J, Weerden T W Van.
Muscle fiber conduction velocity in amyotrophic lateral sclerosis and traumatic lesions
of the plexus brachialis.
Electroencephalogr clin Neurophysiol.
1993;
89 (5)
304-310
Lilia ChristovaPh. D.
Institute of Biophysics
Acad. G. Bontchev Str., Bldg, 21
1113 Sofia · Bulgaria
Phone: + 359-2-9793791
Fax: + 359-2-9712493
Email: lillybio.bas.bg