Semin Thromb Hemost 2006; 32: 069-076
DOI: 10.1055/s-2006-939556
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Activation of Microglial Cells by Thrombin: Past, Present, and Future

Thomas Möller1 , 2 , Jonathan R. Weinstein1 , Uwe-Karsten Hanisch3
  • 1Department of Neurology, School of Medicine, University of Washington, Seattle, Washington
  • 2Center for Neurogenetics and Neurotherapeutics, University of Washington, Seattle, Washington
  • 3Institute for Neuropathology, University of Göttingen, Göttingen, Germany
Further Information

Publication History

Publication Date:
02 May 2006 (online)

ABSTRACT

In addition to its role in the coagulation cascade, the serine proteinase thrombin (factor IIa) activates cell surface proteinase-activated receptors (PARs) both within and outside the vascular system. PARs are expressed in the central nervous system and mediate thrombin-induced cellular responses in a variety of neural cell types, including microglial cells. Microglial activation by thrombin was reported to induce proliferation, cytokine release, and intracellular calcium signaling. Recently, additional experiments questioned whether these effects are mediated either by thrombin's proteolytic activity or by thrombin itself. Analysis of commercially available plasma-derived thrombin frequently used in the earlier studies showed that cyto/chemokine release-activating properties were not residing with thrombin but were with high molecular weight contaminant(s). In the absence of such contamination, no microglial activation was seen. We compared commercial-grade plasma-derived thrombin to pharmaceutical-grade recombinant thrombin devoid of any measurable contamination. The pharmaceutical-grade thrombin displayed a much more limited profile of microglia-activating properties, triggering only intracellular calcium signals and small changes in surface antigen expression. The signals induced by the pharmaceutical-grade thrombin were completely abolished by proteolytic inhibition, indicating that they are proteolysis-dependent, are most likely PAR mediated, and reflect thrombin's true microglia-activating potential. Prior reports using nonpharmaceutical-grade thrombin need to be reinterpreted critically given these new findings.

REFERENCES

  • 1 Gurwitz D, Cunningham D D. Thrombin modulates and reverses neuroblastoma neurite outgrowth.  Proc Natl Acad Sci USA. 1988;  85 3440-3444
  • 2 Suidan H S, Stone S R, Hemmings B A, Monard D. Thrombin causes neurite retraction in neuronal cells through activation of cell surface receptors.  Neuron. 1992;  8 363-375
  • 3 Cavanaugh K P, Gurwitz D, Cunningham D D, Bradshaw R A. Reciprocal modulation of astrocyte stellation by thrombin and protease nexin-1.  J Neurochem. 1990;  54 1735-1743
  • 4 Beecher K L, Andersen T T, Fenton J W, Festoff B W. Thrombin receptor peptides induce shape change in neonatal murine astrocytes in culture.  J Neurosci Res. 1994;  37 108-115
  • 5 Grabham P, Cunningham D D. Thrombin receptor activation stimulates astrocyte proliferation and reversal of stellation by distinct pathways: involvement of tyrosine phosphorylation.  J Neurochem. 1995;  64 583-591
  • 6 Ubl J J, Reiser G. Characteristics of thrombin-induced calcium signals in rat astrocytes.  Glia. 1997;  21 361-369
  • 7 Smith-Swintosky V L, Zimmer S, Fenton J W, Mattson M P. Protease nexin-1 and thrombin modulate neuronal Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury.  J Neurosci. 1995;  15 5840-5850
  • 8 Vaughan P J, Pike C J, Cotman C W, Cunningham D D. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults.  J Neurosci. 1995;  15 5389-5401
  • 9 Festoff B W, Smirnova I V, Ma J, Citron B A. Thrombin, its receptor and protease nexin I, its potent serpin, in the nervous system.  Semin Thromb Hemost. 1996;  22 267-271
  • 10 Suidan H S, Niclou S P, Monard D. The thrombin receptor in the nervous system.  Semin Thromb Hemost. 1996;  22 125-133
  • 11 Donovan F M, Cunningham D D. Signaling pathways involved in thrombin-induced cell protection.  J Biol Chem. 1998;  273 12746-12752
  • 12 Weinstein J R, Lau A L, Brass L F, Cunningham D D. Injury-related factors and conditions down-regulate the thrombin receptor (PAR-1) in a human neuronal cell line.  J Neurochem. 1998;  71 1034-1050
  • 13 Wang H, Ubl J J, Stricker R, Reiser G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways.  Am J Physiol Cell Physiol. 2002;  283 C1351-C1364
  • 14 Niclou S, Suidan H S, Brown-Luedi M, Monard D. Expression of the thrombin receptor mRNA in rat brain.  Cell Mol Biol. 1994;  40 421-428
  • 15 Weinstein J R, Gold S J, Cunningham D D, Gall C M. Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA.  J Neurosci. 1995;  15 2906-2919
  • 16 Niclou S P, Suidan H S, Pavlik A, Vejsada R, Monard D. Changes in the expression of protease-activated receptor 1 and protease nexin-1 mRNA during rat nervous system development and after nerve lesion.  Eur J Neurosci. 1998;  10 1590-1607
  • 17 Wang H, Ubl J J, Reiser G. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling.  Glia. 2002;  37 53-63
  • 18 Wang Y, Richter-Landsberg C, Reiser G. Expression of protease-activated receptors (PARs) in OLN-93 oligodendroglial cells and mechanism of PAR-1-induced calcium signaling.  Neuroscience. 2004;  126 69-82
  • 19 Liu Y, Fields R D, Festoff B W, Nelson P G. Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction.  Proc Natl Acad Sci USA. 1994;  91 10300-10304
  • 20 Nelson P G, Fields R D, Liu Y. Neural activity, neuron-glia relationships, and synapse development.  Perspect Dev Neurobiol. 1995;  2 399-407
  • 21 Turgeon V L, Houenou L J. The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system.  Brain Res Brain Res Rev. 1997;  25 85-95
  • 22 Festoff B W, Suo Z, Citron B A. Plasticity and stabilization of neuromuscular and CNS synapses: interactions between thrombin protease signaling pathways and tissue transglutaminase.  Int Rev Cytol. 2001;  211 153-177
  • 23 Cunningham D D, Pulliam L, Vaughan P J. Protease nexin-1 and thrombin: injury-related processes in the brain.  Thromb Haemost. 1993;  70 168-171
  • 24 Grand R J, Turnell A S, Grabham P W. Cellular consequences of thrombin-receptor activation.  Biochem J. 1996;  313(pt 2) 353-368
  • 25 Gingrich M B, Traynelis S F. Serine proteases and brain damage-is there a link?.  Trends Neurosci. 2000;  23 399-407
  • 26 Wang H, Reiser G. Thrombin signaling in the brain: the role of protease-activated receptors.  Biol Chem. 2003;  384 193-202
  • 27 Deschepper C F, Bigornia V, Berens M E, Lapointe M C. Production of thrombin and antithrombin III by brain and astroglial cell cultures.  Brain Res Mol Brain Res. 1991;  11 355-358
  • 28 Dihanich M, Kaser M, Reinhard E, Cunningham D, Monard D. Prothrombin mRNA is expressed by cells of the nervous system.  Neuron. 1991;  6 575-581
  • 29 Citron B A, Smirnova I V, Arnold P M, Festoff B W. Upregulation of neurotoxic serine proteases, prothrombin, and protease-activated receptor 1 early after spinal cord injury.  J Neurotrauma. 2000;  17 1191-1203
  • 30 Riek-Burchardt M, Striggow F, Henrich-Noack P, Reiser G, Reymann K G. Increase of prothrombin-mRNA after global cerebral ischemia in rats, with constant expression of protease nexin-1 and protease-activated receptors.  Neurosci Lett. 2002;  329 181-184
  • 31 Jamison C S, Degen S J. Prenatal and postnatal expression of mRNA coding for rat prothrombin.  Biochim Biophys Acta. 1991;  1088 208-216
  • 32 Soifer S J, Peters K G, O'Keefe J, Coughlin S R. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development.  Am J Pathol. 1994;  144 60-69
  • 33 Walz D A, Anderson G F, Ciaglowski R E, Aiken M, Fenton J W. Thrombin-elicited contractile responses of aortic smooth muscle.  Proc Soc Exp Biol Med. 1985;  180 518-526
  • 34 Fenton J W. Thrombin.  Ann N Y Acad Sci. 1986;  485 5-15
  • 35 Rubin L L, Staddon J M. The cell biology of the blood-brain barrier.  Annu Rev Neurosci. 1999;  22 11-28
  • 36 Selmaj K. Pathophysiology of the blood-brain barrier.  Springer Semin Immunopathol. 1996;  18 57-73
  • 37 Smirnova I V, Salazar A, Arnold P M et al.. Thrombin and its precursor in human cerebrospinal fluid.  Thromb Haemost. 1997;  78 1473-1479
  • 38 Kasuya H, Shimizu T, Takakura K. Thrombin activity in CSF after SAH is correlated with the degree of SAH the persistence of subarachnoid clot and the development of vasospasm.  Acta Neurochir (Wien). 1998;  140 579-584
  • 39 Suzuki M, Kudo A, Otawara Y et al.. Extrinsic pathway of blood coagulation and thrombin in the cerebrospinal fluid after subarachnoid hemorrhage.  Neurosurgery. 1999;  44 487-493
  • 40 Choi B H, Suzuki M, Kim T, Wagner S L, Cunningham D D. Protease nexin-1. Localization in the human brain suggests a protective role against extravasated serine proteases.  Am J Pathol. 1990;  137 741-747
  • 41 Hoffmann M C, Nitsch C, Scotti A L, Reinhard E, Monard D. The prolonged presence of glia-derived nexin, an endogenous protease inhibitor, in the hippocampus after ischemia-induced delayed neuronal death.  Neuroscience. 1992;  49 397-408
  • 42 Wagner S L, Geddes J W, Cotman C W et al.. Protease nexin-1, an antithrombin with neurite outgrowth activity, is reduced in Alzheimer disease.  Proc Natl Acad Sci USA. 1989;  86 8284-8288
  • 43 Akiyama H, Ikeda K, Kondo H, McGeer P L. Thrombin accumulation in brains of patients with Alzheimer's disease.  Neurosci Lett. 1992;  146 152-154
  • 44 Streit W J. Microglia as neuroprotective, immunocompetent cells of the CNS.  Glia. 2002;  40 133-139
  • 45 Kreutzberg G W. Microglia: a sensor for pathological events in the CNS.  Trends Neurosci. 1996;  19 312-318
  • 46 Carson M J. Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis.  Glia. 2002;  40 218-231
  • 47 Danton G H, Dietrich W D. Inflammatory mechanisms after ischemia and stroke.  J Neuropathol Exp Neurol. 2003;  62 127-136
  • 48 Davalos D, Grutzendler J, Yang G et al.. ATP mediates rapid microglial response to local brain injury in vivo.  Nat Neurosci. 2005;  8 752-758
  • 49 Fetler L, Amigorena S. Neuroscience. Brain under surveillance: the microglia patrol.  Science. 2005;  309 392-393
  • 50 Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.  Science. 2005;  308 1314-1318
  • 51 Hanisch U K, van Rossum D, Xie Y et al.. The microglia-activating potential of thrombin: the protease is not involved in the induction of proinflammatory cytokines and chemokines.  J Biol Chem. 2004;  279 51880-51887
  • 52 van Rossum D, Hanisch U K. Microglia.  Metab Brain Dis. 2004;  19 393-411
  • 53 Möller T, Hanisch U K, Ransom B R. Thrombin-induced activation of cultured rodent microglia.  J Neurochem. 2000;  75 1539-1547
  • 54 Ryu J, Pyo H, Jou I, Joe E. Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B.  J Biol Chem. 2000;  275 29955-29959
  • 55 Suo Z, Wu M, Ameenuddin S et al.. Participation of protease-activated receptor-1 in thrombin-induced microglial activation.  J Neurochem. 2002;  80 655-666
  • 56 Suo Z, Wu M, Citron B A, Gao C, Festoff B W. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation.  J Biol Chem. 2003;  278 31177-31183
  • 57 Balcaitis S, Xie Y, Weinstein J R et al.. Expression of proteinase-activated receptors in mouse microglial cells.  Neuroreport. 2003;  14 2373-2377
  • 58 Hanisch U K. Microglia as a source and target of cytokines.  Glia. 2002;  40 140-155
  • 59 Kim K Y, Kim M Y, Choi H S et al.. Thrombin induces IL-10 production in microglia as a negative feedback regulator of TNF-alpha release.  Neuroreport. 2002;  13 849-852
  • 60 Yang M S, Lee J, Ji K A et al.. Thrombin induces suppressor of cytokine signaling 3 expression in brain microglia via protein kinase Cdelta activation.  Biochem Biophys Res Commun. 2004;  317 811-816
  • 61 Yang M S, Park E J, Sohn S et al.. Interleukin-13 and -4 induce death of activated microglia.  Glia. 2002;  38 273-280
  • 62 Lee D Y, Oh Y J, Jin B K. Thrombin-activated microglia contribute to death of dopaminergic neurons in rat mesencephalic cultures: dual roles of mitogen-activated protein kinase signaling pathways.  Glia. 2005;  51 98-110
  • 63 Xue M, Del Bigio M R. Acute tissue damage after injections of thrombin and plasmin into rat striatum.  Stroke. 2001;  32 2164-2169
  • 64 Carreno-Muller E, Herrera A J, de Pablos R M et al.. Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia.  J Neurochem. 2003;  84 1201-1214
  • 65 Choi S H, Joe E H, Kim S U, Jin B K. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo.  J Neurosci. 2003;  23 5877-5886
  • 66 Choi S H, Lee D Y, Kim S U, Jin B K. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase.  J Neurosci. 2005;  25 4082-4090
  • 67 Suo Z, Citron B A, Festoff B W. Thrombin: a potential proinflammatory mediator in neurotrauma and neurodegenerative disorders.  Curr Drug Targets Inflamm Allergy. 2004;  3 105-114
  • 68 Weinstein J R, Hong S, Kulman J D et al.. Unraveling thrombin's true microglia-activating potential: markedly disparate profiles of pharmaceutical-grade and commercial-grade thrombin preparations.  J Neurochem. 2005;  95 1177-1187
  • 69 Choi S H, Lee D Y, Ryu J K et al.. Thrombin induces nigral dopaminergic neurodegeneration in vivo by altering expression of death-related proteins.  Neurobiol Dis. 2003;  14 181-193
  • 70 Möller T, Kann O, Prinz M et al.. Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors.  Neuroreport. 1997;  8 2127-2131
  • 71 Möller T, Contos J J, Musante D B, Chun J, Ransom B R. Expression and function of lysophosphatidic acid receptors in cultured rodent microglial cells.  J Biol Chem. 2001;  276 25946-25952
  • 72 Sorensen B B, Rao L V, Tornehave D, Gammeltoft S, Petersen L C. Antiapoptotic effect of coagulation factor VIIa.  Blood. 2003;  102 1708-1715
  • 73 Donovan F M, Pike C J, Cotman C W, Cunningham D D. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities.  J Neurosci. 1997;  17 5316-5326

Thomas MöllerPh.D. 

Department of Neurology, University of Washington, Box 356465

1959 NE Pacific Street, Seattle, WA 98195

Email: moeller@u.washington.edu

    >