References and Notes
For two recent reviews on the carbanion chemistry, see:
<A NAME="RW31105ST-1A">1a</A>
Yus M.
Chem. Soc. Rev.
1996,
25:
155
<A NAME="RW31105ST-1B">1b</A>
Alonso F.
Yus M.
Chem. Soc. Rev.
2004,
33:
284
For reviews involving the generation and application of α-lithioamines, see:
<A NAME="RW31105ST-1C">1c</A>
Cohen T.
Bhupathy M.
Acc. Chem. Res.
1989,
22:
152
<A NAME="RW31105ST-1D">1d</A>
Gant TG.
Meyers AI.
Tetrahedron
1994,
50:
2297
<A NAME="RW31105ST-1E">1e</A>
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc. Chem. Res.
1996,
29:
552
<A NAME="RW31105ST-1F">1f</A>
Cohen T.
Pure Appl. Chem.
1996,
68:
913
<A NAME="RW31105ST-1G">1g</A>
Gawley RE.
Curr. Org. Chem.
1997,
1:
71
<A NAME="RW31105ST-1H">1h</A>
Kessar SV.
Singh P.
Chem. Rev.
1997,
97:
721
<A NAME="RW31105ST-1I">1i</A>
Katritzky AR.
Qi M.
Tetrahedron
1998,
54:
2647
<A NAME="RW31105ST-1J">1j</A>
Husson HP.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
<A NAME="RW31105ST-1K">1k</A>
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Chem. Soc. Rev.
2000,
29:
109
<A NAME="RW31105ST-1L">1l</A>
Casiraghi G.
Zanardi F.
Appendino G.
Rassu G.
Chem. Rev.
2000,
100:
1929
<A NAME="RW31105ST-2">2</A> For a series of papers on functionalized organolithium compounds, see: Tetrahedron
Symposia-in-Print, Nájera, C.; Yus, M., Eds.; Tetrahedron
2005,
61:
3125
For a short discussion on challenges associated with the generation and C-C bond formation
of chiral non-racemic N-α-carbanion of protected 4-hydroxy-2-pyrrolidinone A, see:
<A NAME="RW31105ST-3A">3a</A>
Zheng X.
Feng C.-G.
Ye J.-L.
Huang P.-Q.
Org. Lett.
2005,
7:
553
<A NAME="RW31105ST-3B">3b</A> For a synthesis of a specific 2-pirrolidinone derivative of type 9, see:
Poisson JF.
Normant JF.
Org. Lett.
2001,
3:
1889
<A NAME="RW31105ST-3C">3c</A> For a related work, see:
Iula DM.
Gawley RE.
J. Org. Chem.
2000,
65:
6196
For selected reviews, see:
<A NAME="RW31105ST-4A">4a</A>
Elbein AD.
Molyneux R. In
Alkaloids: Chemical and Biological Perspectives
Pelletier SW.
Wiley and Sons;
New York:
1987.
Vol. 5:
<A NAME="RW31105ST-4B">4b</A>
Takahata H.
Momose T. In
The Alkaloids
Cordell GA.
Academic;
San Diego, CA:
1993.
Vol. 44:
Chap. 3.
<A NAME="RW31105ST-4C">4c</A>
Michael JP.
Nat. Prod. Rep.
1997,
14:
619
<A NAME="RW31105ST-4D">4d</A>
Michael JP.
Nat. Prod. Rep.
1998,
15:
571
<A NAME="RW31105ST-4E">4e</A>
Michael JP.
Nat. Prod. Rep.
1999,
16:
675
<A NAME="RW31105ST-4F">4f</A>
Asano N.
Nash RJ.
Molyneux RJ.
Fleet GWJ.
Tetrahedron: Asymmetry
2000,
11:
1645
For comprehensive reviews on azasugars, see:
<A NAME="RW31105ST-5A">5a</A>
Elbein AD.
Molyneux RJ. In
Iminosugars as Glycosidase Inhibitors
Stutz AE.
Wiley-VCH;
Weinheim:
1999.
p.216
<A NAME="RW31105ST-5B">5b</A>
Sears P.
Wong C.-H.
Angew. Chem. Int. Ed.
1999,
38:
2301
<A NAME="RW31105ST-5C">5c</A>
Watson AA.
Fleet GWJ.
Asano N.
Molyneux RJ.
Nash RJ.
Phytochemistry
2001,
56:
265
<A NAME="RW31105ST-5D">5d</A>
Afarinkia K.
Bahar A.
Tetrahedron: Asymmetry
2005,
16:
1239
<A NAME="RW31105ST-6">6</A>
El Nemr A.
Tetrahedron
2000,
56:
8579
<A NAME="RW31105ST-7">7</A> For a recent synthesis of bulgecinine, see:
Chavan SP.
Praveen C.
Sharma P.
Kalkote UR.
Tetrahedron Lett.
2005,
46:
439
<A NAME="RW31105ST-8">8</A>
Huang P.-Q.
Zheng X.
Wang S.-L.
Ye J.-L.
Jin L.-R.
Chen Z.
Tetrahedron: Asymmetry
1999,
10:
3309
<A NAME="RW31105ST-9A">9a</A>
Huang P.-Q.
Wu T.-J.
Ruan Y.-P.
Org. Lett.
2003,
5:
4341
<A NAME="RW31105ST-9B">9b</A>
Huang P.-Q.
Deng J.
Synlett
2004,
247
For an achiral version, see:
<A NAME="RW31105ST-10A">10a</A>
Gallagher T.
Giles M.
Subramanian RS.
Hadley MS.
J. Chem. Soc., Chem. Commun.
1992,
166
<A NAME="RW31105ST-10B">10b</A>
Thompson SHJ.
Subramanian RS.
Roberts JK.
Hadley MS.
Gallagher T.
J. Chem. Soc., Chem. Commun.
1994,
933
<A NAME="RW31105ST-11">11</A>
Tang T.
Ruan Y.-P.
Ye J.-L.
Huang P.-Q.
Synlett
2005,
231
<A NAME="RW31105ST-12A">12a</A>
Huang P.-Q.
Wang S.-L.
Ye J.-L.
Ruan Y.-P.
Huang Y.-Q.
Zheng H.
Gao JX.
Tetrahedron
1998,
54:
12547
<A NAME="RW31105ST-12B">12b</A>
He B.-Y.
Wu T.-J.
Yu X.-Y.
Huang P.-Q.
Tetrahedron: Asymmetry
2003,
14:
2101
<A NAME="RW31105ST-12C">12c</A>
Liu L.-X.
Ruan Y.-P.
Guo Z.-Q.
Huang P.-Q.
J. Org. Chem.
2004,
69:
6001
<A NAME="RW31105ST-13A">13a</A>
Ha DC.
Yun CS.
Yu E.
Tetrahedron Lett.
1996,
37:
2577
<A NAME="RW31105ST-13B">13b</A>
Jacobi PA.
Brielmann HL.
Hauck SI.
J. Org. Chem.
1996,
61:
5013
<A NAME="RW31105ST-13C">13c</A>
Farcas S.
Namy JL.
Tetrahedron Lett.
2001,
42:
879
<A NAME="RW31105ST-13D">13d</A>
Kim S.-H.
Park Y.
Choo H.
Cha JK.
Tetrahedron Lett.
2002,
43:
6657
<A NAME="RW31105ST-13E">13e</A>
Padwa A.
Rashatasakhon P.
Rose M.
J. Org. Chem.
2003,
68:
5139
<A NAME="RW31105ST-13F">13f</A>
Mulder JA.
Kurtz KCM.
Hsung RP.
Coverdale H.
Frederick MO.
Shen L.
Zificsak CA.
Org. Lett.
2003,
5:
1547
<A NAME="RW31105ST-13G">13g</A> For an approach to exo-glycals, see:
Yang WB.
Yang YY.
Gu YF.
Wang SH.
Chang CC.
Lin CH.
J. Org. Chem.
2002,
67:
3773
<A NAME="RW31105ST-14A">14a</A>
Koseki Y.
Kusano S.
Ichi D.
Yoshida K.
Nagasaka T.
Tetrahedron
2000,
56:
8855
<A NAME="RW31105ST-14B">14b</A>
Xiong H.
Hsung RP.
Shen L.
Hahn JM.
Tetrahedron Lett.
2002,
43:
4449
<A NAME="RW31105ST-14C">14c</A>
Koseki Y.
Sato H.
Watanabe Y.
Nagasaka T.
Org. Lett.
2002,
4:
885
<A NAME="RW31105ST-14D">14d</A>
Davies SG.
Key MS.
Rodriguez-Solla H.
Sanganee HJ.
Savory ED.
Smith AD.
Synlett
2003,
1659
<A NAME="RW31105ST-15">15</A>
All new compounds (6 and 9) gave satisfactory analytical and spectral data.
General Procedure for the Synthesis of 9.
To a solution of the more polar diastereomer of 5
[12]
(1.0 mmol) in CH2Cl2 (10 mL) was added 0.05 mmol of p-TSA. The mixture was stirred at r.t. for 1 h. Then the reaction was quenched with
sat. aq NaHCO3 and extracted with CH2Cl2 (3 × 10 mL). The combined extracts were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting residue was purified
by column chromatography on silica gel eluting with EtOAc-PE to give 6. To a solution of 6 (1.0 mmol) in a mixture of abs. MeOH (20 mL) and dry CH2Cl2 (10 mL) was added dropwise a solution of MCPBA (3.0 mmol) in CH2Cl2 (10 mL) at -78 °C under nitrogen atmosphere. After the mixture stirred for 1 h, it
was allowed to reach r.t. and stirred overnight. Then, the reaction was quenched with
a solution of aq Na2S2O3 (10%) and sat. NaHCO3. The mixture was extracted with CH2Cl2 (3 × 40 mL). The combined extracts were washed with brine, dried over anhyd Na2SO4, filtered and concentrated in vacuum. Filtration through a short pad of SiO2 eluting with EtOAc-PE gave 8 as a mixture of diastereomers. The diastereomeric ratios were determined either by
flash chromatographic separation or by analysis of 1H NMR spectra of the crude mixture. To a cooled (-78 °C) solution of diastereomeric
mixture of 8 (1.0 mmol) in dry CH2Cl2 (10 mL) were added dropwise triethylsilane (10 mmol) and BF3·OEt2 (10.0 mmol) under nitrogen atmosphere. After stirred for 6 h at the same temperature,
the reaction was allowed to warm up and stirred at r.t. overnight. The reaction was
quenched with sat. aq NaHCO3 and extracted with CH2Cl2 (3 × 20 mL). The combined extracts were washed with brine, dried over anhyd Na2SO4, filtered and concentrated in vacuum. The residue was purified by flash column chromatography
on silica gel eluting with EtOAc-PE to give 9.
Selected physical and spectral data for 6d: [α]D
20 +62.0 (c 0.4, CHCl3). IR (film): 3060, 3023, 1719, 1674 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.80 (t, J = 7.3 Hz, 3 H, CH3), 1.22-1.38 (m, 2 H, MeCH2), 1.94-2.12 (m, 2 H, EtCH2), 2.68 (dd, J = 1.7, 17.8 Hz, 1 H, COCH2), 2.78 (dd, J = 7.0, 17.8 Hz, 1 H, COCH2), 4.42 (d, J = 11.2 Hz, 1 H, PhCH2O), 4.53 (d, J = 11.2 Hz, 1 H, PhCH2O), 4.70 (s, 2 H, PhCH2N), 4.74 (dd, J = 1.7, 7.0 Hz, 1 H, BnOCH), 4.84 (t, J = 7.5 Hz, 1 H, =CH), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.6, 23.3, 28.7, 36.6, 43.4, 69.9, 70.2, 108.0, 127.0, 127.2, 128.0, 128.1,
128.3, 128.4, 128.5, 135.8, 137.3, 138.9, 173.1 ppm. MS (ESI): m/z (%) = 336 (100) [M + H+]. Anal. Calcd for C22H25NO2: C, 78.77; H, 7.51; N, 4.18. Found: C, 78.81; H, 7.47; N, 4.00.
Selected physical and spectral data for 9d: major diastereomer: colorless oil; [α]D
20 +44.2 (c 1.0, CHCl3). IR (film): 3378, 3063, 3031, 1671 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.84 (t, J = 7.1 Hz, 3 H, CH3), 1.22-1.48 [m, 4 H, Me(CH2)2], 2.50 (dd, J = 1.3, 17.4 Hz, 1 H, COCH2), 2.80 (dd, J = 6.9, 17.4 Hz, 1 H, COCH2), 3.00 (br s, 1 H, OH), 3.40 (d, J = 4.9 Hz, 1 H, BnNCH), 3.78-3.84 (m, 1 H, CHOH), 4.18 (d, J = 15.0 Hz, 1 H, PhCH2N), 4.19 (dd, J = 1.3, 6.9 Hz, 1 H, BnOCH), 4.40 (d, J = 11.7 Hz, 1 H, PhCH2O), 4.48 (d, J = 11.7 Hz, 1 H, PhCH2O), 5.00 (d, J = 15.0 Hz, 1 H, PhCH2N), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.9, 19.3, 34.8, 38.6, 44.2, 68.0, 68.8, 70.4, 71.9, 127.7, 127.8, 128.4,
128.8, 136.2, 137.5, 174.2 ppm. MS (ESI): m/z (%) = 376 (100) [M + Na+]; minor diastereomer: white crystals, mp 77-79 °C; [α]D
20 +13.9 (c 0.4, CHCl3). IR (KBr, pellet): 3394, 3062, 3031, 1669 cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.88 (t, J = 7.3 Hz, 3 H, CH3), 1.10-1.32 [m, 3 H, Me(CH2)2], 1.42-1.52 [m, 1 H, Me(CH2)2], 2.33 (br s, 1 H, OH), 2.51 (d, J = 17.7 Hz, 1 H, COCH2), 2.75 (dd, J = 6.4, 17.7 Hz, 1 H, COCH2), 3.58 (d, J = 4.6 Hz, 1 H, BnNCH), 3.61-3.65 (m, 1 H, CHOH), 4.02 (d, J = 6.4 Hz, 1 H, BnOCH), 4.18 (d, J = 15.2 Hz, 1 H, PhCH2N), 4.42 (s, 2 H, PhCH2O), 5.02 (d, J = 15.2 Hz, 1 H, PhCH2N), 7.20-7.40 (m, 10 H, Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.8, 19.2, 34.8, 38.2, 45.9, 67.8, 70.2, 71.3, 73.8, 127.5, 127.6, 127.7,
127.9, 128.4, 128.6, 136.3, 137.6, 174.3 ppm. MS (ESI): m/z (%) = 354 (67) [M + H+], 376 (100) [M + Na+]. Anal. Calcd for C22H27NO3: C, 74.76; H, 7.70; N, 3.96. Found: C, 74.77; H, 7.94; N, 4.02.
<A NAME="RW31105ST-16A">16a</A>
Deslongchamps P.
Stereoelectronic Effects in Organic Chemistry
Pergamon;
New York:
1983.
See also:
<A NAME="RW31105ST-16B">16b</A>
Kirby AJ.
The Anomeric Effect and Related Stereoelectronic Effects at Oxygen
Springer;
New York:
1983.
<A NAME="RW31105ST-16C">16c</A>
Thatcher GRJ.
The Anomeric Effect and Associated Stereoelectronic Effects
ACS Symposium Series 593, American Chemical Society;
Washington DC:
1993.
<A NAME="RW31105ST-16D">16d</A>
Juaristi E.
Cuevas G.
The Anomeric Effect
CRC;
Boca Raton, FL:
1995.
<A NAME="RW31105ST-17A">17a</A> For a related stereoelectronic effect observed in another class of N,O-acetals, see:
Chen M.-D.
He M.-Z.
Zhou X.
Huang L.-Q.
Ruan Y.-P.
Huang P.-Q.
Tetrahedron
2005,
61:
1335
<A NAME="RW31105ST-17B">17b</A> For an example of stereoelectronic control of oxazolidine ring-opening, see:
Sélambarom J.
Monge S.
Carré F.
Roque JP.
Pavia AA.
Tetrahedron
2002,
58:
9559
For reviews on the Et3SiH-mediated ionic hydrogenation, see:
<A NAME="RW31105ST-18A">18a</A>
Kursanov DN.
Parnes ZN.
Loim NM.
Synthesis
1974,
633
<A NAME="RW31105ST-18B">18b</A>
Nagai Y.
Org. Prep. Proced. Int.
1980,
12:
13
For recent reviews on the chemistry of N-acyliminiums, see:
<A NAME="RW31105ST-19A">19a</A>
Speckamp WN.
Moolenaar MJ.
Tetrahedron
2000,
56:
3817
<A NAME="RW31105ST-19B">19b</A>
Maryanoff BE.
Zhang H.-C.
Cohen JH.
Turchi IJ.
Maryanoff CA.
Chem. Rev.
2004,
104:
1431
<A NAME="RW31105ST-19C">19c</A>
Royer J.
Chem. Rev.
2004,
104:
2311
<A NAME="RW31105ST-20">20</A>
Bernardi A.
Micheli F.
Potenza D.
Scolastico C.
Villa R.
Tetrahedron Lett.
1990,
31:
4949