References and Notes
<A NAME="RU01506ST-1A">1a</A>
Ley SV.
Thomas AW.
Angew. Chem. Int. Ed.
2003,
42:
5400
<A NAME="RU01506ST-1B">1b</A>
Kondo T.
Mitsudo T.
Chem. Rev.
2000,
100:
3205
<A NAME="RU01506ST-1C">1c</A>
Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
<A NAME="RU01506ST-2A">2a</A>
Metzner P.
Thuillier A.
Sulfur Reagents in Organic Synthesis
Katritzky AR.
Meth-Cohn O.
Rees CW.
Academic Press;
San Diego:
1994.
<A NAME="RU01506ST-2B">2b</A>
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
<A NAME="RU01506ST-3A">3a</A>
Kosugi M.
Shimizu T.
Migita T.
Chem. Lett.
1978,
13
<A NAME="RU01506ST-3B">3b</A>
Suzuki H.
Abe H.
Osuka A.
Chem. Lett.
1980,
1363
<A NAME="RU01506ST-3C">3c</A>
Bowman WR.
Heaney H.
Smith PHG.
Tetrahedron Lett.
1984,
25:
5821
<A NAME="RU01506ST-3D">3d</A>
Ciattini PG.
Morera E.
Ortar G.
Tetrahedron Lett.
1995,
36:
4133
<A NAME="RU01506ST-3E">3e</A>
Zheng N.
McWilliams JC.
Fleitz FJ.
Armstrong JD.
Volante RP.
J. Org. Chem.
1998,
63:
9606
<A NAME="RU01506ST-3F">3f</A>
Bates CG.
Gujadhur RK.
Venkataraman D.
Org. Lett.
2002,
4:
2803
<A NAME="RU01506ST-3G">3g</A>
Kwong FY.
Buchwald SL.
Org. Lett.
2002,
4:
3517
<A NAME="RU01506ST-3H">3h</A>
Itoh T.
Mase T.
Org. Lett.
2004,
6:
4587
Chalcogenations of alkyl halides using dichalcogenides are known, see:
<A NAME="RU01506ST-4A">4a</A>
Chowdhury S.
Roy S.
Tetrahedron Lett.
1997,
38:
2149
<A NAME="RU01506ST-4B">4b</A>
Kundu A.
Roy S.
Organometallics
2000,
19:
105
<A NAME="RU01506ST-4C">4c</A>
Nishino T.
Okada M.
Kuroki T.
Watanabe T.
Nishiyama Y.
Sonoda N.
J. Org. Chem.
2002,
67:
8696
<A NAME="RU01506ST-4D">4d</A>
Nishino T.
Nishiyama Y.
Sonoda N.
Chem. Lett.
2003,
928
<A NAME="RU01506ST-4E">4e</A>
Ranu BC.
Mandal T.
J. Org. Chem.
2004,
69:
5793
<A NAME="RU01506ST-4F">4f</A>
Ajiki K.
Tanaka K.
Org. Lett.
2005,
7:
4193
<A NAME="RU01506ST-5A">5a</A>
Millois C.
Diaz P.
Org. Lett.
2000,
2:
1705
<A NAME="RU01506ST-5B">5b</A>
Taniguchi N.
Onami T.
Synlett
2003,
829
<A NAME="RU01506ST-5C">5c</A>
Taniguchi N.
Onami T.
J. Org. Chem.
2004,
69:
915
<A NAME="RU01506ST-5D">5d</A>
Taniguchi N.
J. Org. Chem.
2004,
69:
6904
<A NAME="RU01506ST-5E">5e</A>
Taniguchi N.
Synlett
2005,
1687
<A NAME="RU01506ST-6">6</A>
Herradura PS.
Pendola KA.
Guy RK.
Org. Lett.
2000,
2:
2019
<A NAME="RU01506ST-7">7</A> For a review of carbon-heteroatom bond formations using organoboronic acid, see:
Miyaura N.
In Metal-Catalyzed Cross-Coupling Reactions
Vol. 1:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
p.41-123
<A NAME="RU01506ST-8">8</A>
Wang L.
Wang M.
Huang F.
Synlett
2005,
2007
<A NAME="RU01506ST-9">9</A>
Savarin C.
Srogl J.
Liebeskind LS.
Org. Lett.
2002,
4:
4309
<A NAME="RU01506ST-10">10</A> Although Cu(II)X2 salts afforded 4-MeC6H4SPh in good yield, the reaction with other substrates (alkylboronic acids or other
diaryl disulfides) showed lower reactivity
<A NAME="RU01506ST-11">11</A>
Typical Procedure.
To a mixture of CuI (1.9 mg, 0.01 mmol), bpy (1.6 mg, 0.01 mmol), DMSO (0.2 mL), and
H2O (0.1 mL) were added Ph2S2 (43.7 mg, 0.2 mmol) and PhB(OH)2 (73.1 mg, 0.60 mmol), and the mixture was stirred at 100 °C for 12 h in air. After
evaporation of the solvent, the residue was dissolved in Et2O. The solution was washed with H2O, brine, and dried over anhyd MgSO4. Chromatography (silica gel; hexane) gave diphenyl sulfide (72.1 mg, 97%).
Diphenyl Sulfide: IR (neat): 3072, 1579, 1475, 1439 cm-1. 1H NMR (270 MHz, CDCl3): δ = 7.36-7.22 (m, 10 H).
13C NMR (67.5 MHz, CDCl3): δ = 135.7, 131.0, 129.1, 127.0. Anal. Calcd for C12H10S: C, 77.37; H, 5.41. Found: C, 77.18; H, 5.49.
4-Formylphenyl Phenyl Sulfide: IR (neat): 3058, 1697, 1591, 1561, 1475 cm-1. 1H NMR (270 MHz, CDCl3): δ = 9.89 (s, 1 H), 7.70 (d, J = 8.6 Hz, 2 H), 7.49-7.53 (m, 2 H), 7.43-7.39 (m, 3 H), 7.23 (d, J = 8.6 Hz, 2 H). 13C NMR (67.5 MHz, CDCl3): δ = 191.0, 147.1, 134.2, 133.6, 131.2, 130.0, 129.7, 129.0, 127.1. Anal. Calcd
for C13H10OS: C, 72.87; H, 4.70. Found: C, 72.69; H, 4.95.
Cyclohexyl Phenyl Sulfide: IR (neat): 2929, 2852, 1583, 1479, 1448 cm-1. 1H NMR (270 MHz, CDCl3): δ = 7.40-7.36 (m, 2 H), 3.30-3.17 (m, 3 H), 3.13-3.05 (m, 1 H), 2.01-1.96 (m, 2
H), 1.78-1.74 (m, 2 H), 1.63-1.57 (m, 1 H), 1.42-1.25 (m, 5 H). 13C NMR (67.5 MHz, CDCl3): δ = 135.1, 131.8, 128.6, 126.5, 46.5, 33.3, 26.0, 25.7. Anal. Calcd for C12H16S: C, 74.94; H, 8.39. Found: C, 74.96; H, 8.35.
<A NAME="RU01506ST-12">12</A>
Org. Synth. Coll.
Vol. V:
John Wiley & Sons;
New York:
1973.
p.107-110
<A NAME="RU01506ST-13A">13a</A>
Evans DA.
Katz JL.
West TR.
Tetrahedron Lett.
1998,
39:
2937
<A NAME="RU01506ST-13B">13b</A>
Collman JP.
Zhong M.
Org. Lett.
2000,
2:
1233
<A NAME="RU01506ST-14">14</A>
A disulfide bond can be cleaved by CuI; see ref. 5b and 5d.
<A NAME="RU01506ST-15">15</A>
4-Formylphenyl Phenyl Selenide: IR (neat): 3055, 2828, 2733, 1696, 1587 cm-1. 1H NMR (270 MHz, CDCl3): δ = 9.90 (s, 1 H), 7.67 (d, J = 8.6 Hz, 2 H), 7.62-7.59 (m, 2 H), 7.41-7.34 (m, 5 H). 13C NMR (67.5 MHz, CDCl3): δ = 191.2, 142.6, 135.4, 134.4, 130.1, 130.0, 129.7, 128.8, 127.8. Anal. Calcd
for C13H10OSe: C, 59.78; H, 3.86. Found: C, 59.55; H, 3.96.
4-Formylphenyl Phenyl Telluride: IR (neat): 3052, 2827, 2734, 1694, 1582 cm-1. 1H NMR (270 MHz, CDCl3): δ = 9.89 (s, 1 H), 7.83 (d, J = 8.3 Hz, 2 H), 7.62-7.61 (m, 4 H), 7.59-7.25 (m, 3 H). 13C NMR (67.5 MHz, CDCl3): δ = 191.5, 139.8, 135.6, 135.1, 129.8, 128.9, 126.6, 112.9. Anal. Calcd for C13H10OTe: C, 50.40; H, 3.25. Found: C, 50.12; H, 3.35.