Der Nuklearmediziner 2006; 29(4): 227-236
DOI: 10.1055/s-2006-942255
CME-Beitrag

© Georg Thieme Verlag Stuttgart · New York

Pathophysiologische Grundlagen und diagnostische Grenzen der konventionellen Skelettszintigraphie

Pathophysiologic Basics and Diagnostic Limits of Conventional Bone ScanningC. Schümichen1 , S. Dunkelmann1
  • 1Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Rostock
Further Information

Publication History

Publication Date:
30 November 2006 (online)

Zusammenfassung

Das normale Skelettszintigramm reflektiert die physiologische regionale Knochenneubildungsrate, die auf das Remodeling und die Aufrechterhaltung der Kalziumhomöostase zurückgeht. Osteotrope Radiopharmaka können sowohl als Perfusionsmarker als auch als Marker des regionalen Knochenstoffwechsels eingesetzt werden. Eine lokale Hyperperfusion ohne gesteigerten Knochenstoffwechsel findet sich bei der Inaktivitätsatrophie und der sympathischen Reflexdystrophie, die schwierig zu unterscheiden sind, eine lokale Hypoperfusion ist Ursache für falsch negative Befunde bei Osteomyelitis. Eine regional gesteigerte Knochenneubildung ist Substrat des Positivnachweises von Frakturen, Entzündungen, Tumoren, Metastasen und anderen Läsionen. Im direkten Vergleich mit anderen bildgebenden Verfahren (MRT, Szintigraphie mit nicht osteotropen Radiopharmaka und PET, jedoch nicht CT und Multislice-CT) zeigt die planare Skelettszintigraphie unerwartete Defizite in der Sensitivität, die durch Anwendung von SPECT und noch besser PET mit 18F-Fluorid weitgehend bis ganz abgebaut werden können. Diese Techniken verbessern auch die Spezifität, die trotz verbesserter Abbildungsqualität und großem Erfahrungsschatz immer noch ein Schwachpunkt der Methode ist. Noch wünschenswerter ist daher die Einführung von SPECT/CT und PET/CT in die Skelettszintigraphie.

Abstract

Normal bone scan demonstrates the physiological regional bone formation rate, which is related to bone remodeling and maintenance of calcium homeostasis. Osteotrope radiopharmaceuticals can be used as a perfusion marker as well as a marker of regional bone formation rate. Local hyperperfusion without increased bone formation is seen in disuse atrophy and reflex sympathic dystrophy, which are difficult to discriminate, local hypoperfusion is responsible for false negative results in osteomyelitis. A local increased bone formation rate is the substrate of a positive finding in bone fracture, inflammation, tumors, metastases and other lesions. In direct comparison with other imaging modalities (MRT, scintigraphy with non-osteotrope radiopharmaceutical and PET, but not CT and multislice-CT), planar bone scintigraphy shows an unexpected deficiency in sensitivity, which can be almost or completely overcome by using SPECT or even better 18F-fluoride PET. These techniques will also improve specificity, which still is a weak point of bone scanning, despite improved imaging performance and a huge experience in this field. The introduction of SPECT/CT und PET/CT in bone scanning will be even more desirable for this reason.

Literatur

  • 1 Schümichen C, Mundriziewski L, Tischler E, Hoffmann G. Relationship between blood flow and radiostrontium uptake in healing bone fracture.  Eur J Nucl Med. 1979;  4 413-417
  • 2 Schümichen C, Koch K, Kraus A, Kuhlicke G, Weiler K, Wenn A, Hoffmann G. Binding of technetium-99m to plasma proteins: influence on the distribution of Tc-99m phosphate agents.  J Nucl Med. 1980;  21 1080-1085
  • 3 Schwartz Z, Shani J, Soskolne W A, Toume H, Amir D, Sela J. Uptake and biodistribution of technetium-99m-MD32P during rat tibial bone repair.  J Nucl Med. 1993;  34 104-108
  • 4 Schümichen C, Rempfle H, Wagner M, Hoffmann G. The short-term fixation of radiopharmaceuticals in bone.  Eur J Nucl Med. 1979;  4 423-428
  • 5 Schoutens A, Bergmann P, Verhas M. Bone blood flow measured by 85Sr micropheres and bone seeker clearances in the rat.  Am J Physiol. 1979;  236 H1-H6
  • 6 Todorovic-Tirnanic M, Obradovic V, Han R, Goldner B, Stankovic D, Sekulic D, Lazic T, Djordjevic B. Diagnostic approach to reflex sympathic dystrophy after fracture: radiography or bone scintigraphy.  Eur J Nucl Med. 1995;  22 1187-1193
  • 7 Zyluk A. The usefulness of quantitative evaluation of three-phase scintigraphy in the diagnosis of post-traumatic reflex sympathetic dystrophy.  J Hand Surg [Br]. 1999;  24 16-21
  • 8 Lee G W, Weeks P M. The role of bone scintigraphy in diagnosing reflex sympathetic dystrophy.  J Hand Surg [Am]. 1995;  20 458-463
  • 9 Turpin S, Taillefer R, Lambert R, Leveille J. “Cold” reflex sympathic dystrophy in an adult.  Clin Nucl Med. 1996;  21 94-97
  • 10 Zyluk A, Birkenfeld B. Quantitative evaluation of three-phase bone scintigraphy before and after the treatment of posttraumatic reflex sympathic dystrophy.  Nucl Med Commun. 1999;  20 327-333
  • 11 Fukui S, Morika Y, Shibata M. Three phase bone scintigraphy of reflex dystrophy and its change with sympathic blockade.  Masui. 1994;  43 1061-1065
  • 12 Erasmie U, Hirsch G. Acute hematogenous osteomyelitis of children - the reliability of skeletal scintigraphy.  Z Kinderchir. 1981;  32 360-366
  • 13 Connolly L P, Connolly S A, Drubach L A, Jaramillo D, Treves S T. Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the area of MRI.  J Nucl Med. 2002;  43 1310-1316
  • 14 Spitz J, Lauer I, Tittel K, Wiegand H. Scintimetric evaluation of remodeling after bone fractures in man.  J Nucl Med. 1993;  34 1403-1439
  • 15 Matin P. The appearance of bone scans following fractures, including immediate and long-term studies.  J Nucl Med. 1979;  29 1227-1231
  • 16 Nakashima H, Ochi H, Yasui N, Hamada H, Ono K. Uptake and localization of 99mTc-methelene diphosphonate in mouse osteosarcoma.  Eur J Nucl Med. 1982;  7 531-535
  • 17 Ozcan Z, Burak Z, Kumanlioglu K, Sabah D, Basdemir G, Bilkay B, Cetingul N, Ozkilic H. Assessment of chemotherapy-induced changes in bone sarcomas: clinical experience with 99mTc-MDP three-phase dynamic bone scintigraphy.  Nucl Med Commun. 1999;  20 41-48
  • 18 Schneider J A, Divgi C R, Scott A M, Macapinlac H A, Seidmann A D, Goldsmith S J, Larson S M. Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer.  J Nucl Med. 1994;  35 1748-1752
  • 19 Lemieux J, Guimond J, Laberge F, St-Pierre C, Cormier Y. The bone scan flare phenomenon in non-small cell lung cancer.  Clin Nucl Med. 2002;  27 486-489
  • 20 Bushnell D L, Madsen M, Kahn D, Nathan M, Williams R D. Enhanced uptake of 99Tcm-MDP in skeletal metastases from prostate cancer following initiation of hormone treatment: potential for increasing delivery of therapeutic agents.  Nucl Med Commun. 1999;  20 875-881
  • 21 Vogel C L, Schoenfelder J, Shemano I, Hayes D F, Gams R A. Worsening bone scan in the evalutation of antitumor response during hormonal therapy of breast cancer.  J Clin Oncol. 1995;  13 1123-1128
  • 22 Mandell G A, Contreras S J, Conrad K, Harcke H T, Maas K W. Bone scintigraphy in the detection of chronic recurrent multifocal osteomyelitis.  J Nucl Med. 1998;  39 1778-1783
  • 23 Girschick H J, Krauspe R, Tschammler A, Huppertz H I. Chronic recurrent osteomyelitis with clavicular involvement in children: diagnostic value of different imaging techniques and therapy with non-steroidal anti-inflammatory therapy.  Eur J Pediatr. 1998;  157 28-33
  • 24 Schilling F, Coerdt W, Wickardt A, Full H, Hospach T, Kessler S, Kocher M, Kreitner K F. Pelvic type of chronic recurrent multifocal osteomyelitis.  Klin Padiatr. 2001;  213 277-284
  • 25 Roukoz S, Kahwaji A, Haddad-Zebouni S, Aoun N, Gerberka B, Attalla N. Recurrent multifokal chronic osteomyelitis: scintigraphy or MRI. Apropos of 2 cases.  J Radiol. 1999;  80 469-472
  • 26 Girschick H J, Huppertz H I, Harmsen D, Krauspe R, Muller-Hermelink H K, Papadopoulos T. Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing.  Human Pathol. 1999;  30 59-65
  • 27 Seabold J E, Simonson T M, Weber P C, Thompson B H, Harris K G, Reai K, Hoffman H T. Cranial osteomyelitis: diagnosis and follow-up with In-111 white blood cell and Tc-99m methylene diphosphonate bone SPECT, CT, MR imaging.  Radiology. 1995;  196 779-788
  • 28 Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D, Magaudda L, Blandino A. CT and MR imaging in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on critical abnormalities.  Radiology. 2005;  235 (2) 553-561
  • 29 Groves A M, Cheow H K, Balan K K, Beacroft P W, Dixon A K. 16-Detector multislice CT versus skeletal scintigraphy in the detection of wrist fractures: value of quantification of 99mTc-MDP uptake.  Br J Radiol. 2005;  78 791-795
  • 30 Groves A M, Cheow H K, Balan K K, Housden B A, Beacroft P W, Dixon A K. 16-Detector multislice CT in the detection of stress fractures: a comparison with skeletal scintigraphy.  Clin Radiol. 2005;  60 1100-1105
  • 31 Ishibashi Y, Okamura Y, Otsuka H, Nishizawa K, Sasaki T, Toh S. Comparison of scintigraphy and magnetic resonance imaging for stress injuries of bone.  Clin J Sport Med. 2002;  12 79-84
  • 32 Li J, Miller M A, Hutchins G D, Burr D B. Imaging bone microdamage in vivo with positron emission tomography.  Bone. 2005;  37 819-824
  • 33 McDougell I R, Kriss J P. Screening for bone metastases. Are only scans necessary?.  JAMA. 1975;  231 46-50
  • 34 Schirrmeister H, Buck A, Guhlmann A, Reske S N. Anatomical distrubution and sclerotic activity of bone metastases from thyroid cancer assesed with F-18 sodium fluoride positron emission tomography.  Thyroid. 2001;  11 677-683
  • 35 Gayed I, Vu T, Johnson M, Macapinlac H, Podoloff D. Comparison of bone and 2-deoxy-2-[18]fluoro-D-glucose positron emission tomography in evaluation of bony metastases in lung cancer.  Mol Imaging Biol. 2003;  5 26-31
  • 36 Fujimoto R, Higashi T, Nakamoto Y, Hara T, Lyshick A, Ishizu K, Kawashima H, Kawase K, Fujita T, Saga T, Togashi K. Diagnostic accuracy of bone metastases detection in cancer patients: comparison between bone scintigraphy and whole-body FDG-PET.  Ann Nucl Med. 2006;  20 399-408
  • 37 Mentzel H J, Kentouche K, Sauner D, Fleischmann C, Vogt S, Gottschild D, Zintl F, Kaiser W A. Comparison of whole body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions.  Eur Rad. 2004;  14 2297-2302
  • 38 Goltzmann D, Karaplis A C, Kremer R, Rabbani S A. Molecular basis of the spectrum of skeletal complications of neoplasia.  Cancer. 2000;  88 (Suppl 12) 2903-2908
  • 39 Roodmann G D. Pathogenesis of myeloma bone disease.  Blood Cells Mol Dis. 2004;  32 290-292
  • 40 Roux S, Mariette X. The high rate of bone resorption in multiple myeloma is due to RANK (receptor activator of nuclear factor-kappaB) and RANK ligand expression.  Leuk Lymphoma. 2004;  45 1111-1118
  • 41 Macro M, Bourvard G, Le Gangneux E, Colin T, Loyau G. Intravenous aminohydrxypropylidene bisphosphonate does not modify 99mTc-hydroxymethylene bisphosphonate bone scintigraphy. A prospective study.  Rev Rhum Engl Ed. 1995;  62 99-104
  • 42 Roudier M P, Veselle H, True L D, Higano C S, Ott S M, King S H, Vessella R L. Bone histology at autopsy and matched bone scintigrapyhy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results.  Clin Exp Metastasis. 2003;  20 171-180
  • 43 Hatzel M, Arslandemir C, Konig H H, Buck A K, Nussle K, Glatting G, Gabelmann A, Hetzel J, Hombach V, Schirrmeister H. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management.  J Bone Miner Res. 2003;  18 2206-2214

Prof. Dr. med. C. Schümichen

Klinik und Poliklinik für Nuklearmedizin · Universitätsklinikum Rostock

Gertrudenplatz 1

18057 Rostock

Phone: 03 81/4 94 91 01

Email: carl.schuemichen@med.uni-rostock.de

    >