Osteosynthesis and Trauma Care 2006; 14(3): 168-180
DOI: 10.1055/s-2006-942270
Original Article

© Georg Thieme Verlag Stuttgart · New York

Ultrastructural Insights into the World of Cartilage: Electron Microscopy of Articular Cartilage

S. Nürnberger1 , 2 , W. Klepal2 , V. Vécsei1 , S. Marlovits1
  • 1Medical University of Vienna, Department of Traumatology, Center for Joints and Cartilage, Vienna, Austria
  • 2University of Vienna, Cell Imaging and Ultrastructure Research, Vienna, Austria
Further Information

Publication History

Publication Date:
02 November 2006 (online)

Abstract

Articular cartilage has a hierarchical organization, which is based on the mechanical stress to which it is exposed. It functions as a gliding surface, as well as in force distribution and varies according to the kind and duration of mechanical demand. In order to understand articular cartilage biology and developmental or pathological variations, tissue morphology is an important and versatile tool. In the present overview, the fine structure of cartilage is presented and related to functional aspects.

References

  • 1 Anderson H C. Vesicles associated with calcification in the matrix of epiphyseal cartilage.  J Cell Biol. 1969;  41 59-72
  • 2 Ap Gwynn I, Wade S, Ito K, Richards R G. Novel aspects to the structure of rabbit articular cartilage.  Eur Cell Mater. 2002;  4 18-29
  • 3 Ap Gwynn I, Wade S, Kaab M J, Owen G R, Richards R G. Freeze-substitution of rabbit tibial articular cartilage reveals that radial zone collagen fibres are tubules.  J Microsc. 2000;  197 (Pt 2) 159-172
  • 4 Benjamin M, Archer C W, Ralphs J R. Cytoskeleton of cartilage cells.  Microsc Res Tech. 1994;  28 372-377
  • 5 Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen und Funktionen. Zweiter Teil: Der Feinbau des Gelenkknorpels in seinen Beziehungen zur Funktion.  Z Zellforsch. 1925;  2 783-862
  • 6 Bonnet C S, Walsh D A. Osteoarthritis, angiogenesis and inflammation.  Rheumatology. 2005;  44 7-16
  • 7 Bonucci E. Fine structure of early cartilage calcification.  J Ultrastruct Res. 1967;  20 33-50
  • 8 Bonucci E. Fine structure and histochemistry of “calcifying globules” in epiphyseal cartilage.  Z Zellforsch Mikrosk Anat. 1970;  103 192-217
  • 9 Broom N D, Poole C A. A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition.  J Anat. 1982;  135 (Pt 1) 65-82
  • 10 Buckwalter J A, Hunziker E B, Rosenberg L, Coutts R D, Adams M, Eyre D R. Articular cartilage: Composition and structure. In: Woo SS-Y, Buckwalter JA (eds). Injury and Repair of the Musculoskeletal Soft Tissues. American Academy of Orthopaedic Surgeons, Park Ridge, Illinois 1988; 405-425
  • 11 Buckwalter J A, Mankin H J. Articular cartilage. Part I: Tissue design and chondrocyte-matrix interactions.  J Bone Joint Surg [Am]. 1997;  79 600-611
  • 12 Buckwalter J A, Rosenberg L, Coutts R D, Hunziker E B, Reddi A H, Van Mow C. Articular cartilage: Injury and repair. In: Woo SS-Y, Buckwalter JA (eds). Injury and Repair of the Musculoskeletal Soft Tissues. American Academy of Orthopaedic Surgeons, Park Ridge, Illinois 1988; 465-482
  • 13 Bullough P G, Jagannath A. The morphology of the calcification front in articular cartilage. Its significance in joint function.  J Bone Joint Surg [Br]. 1983;  65 72-78
  • 14 Buschmann M D, Gluzband Y A, Grodzinsky A J, Hunziker E B. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture.  J Cell Sci. 1995;  108 (Pt 4) 1497-1508
  • 15 Buschmann M D, Hunziker E B, Kim Y J, Grodzinsky A J. Altered aggrecan synthesis correlates with cell and nucleus structure in statically compressed cartilage.  J Cell Sci. 1996;  109 (Pt 2) 499-508
  • 16 Chen R, Wang S, Chen X, Xiong S. A histological and ultrastructural study of the tidemark in human condylar cartilage.  Zhonghua Kou Qiang Yi Xue Za Zhi. 2002;  37 425-427
  • 17 Clark J M. The organisation of collagen fibrils in the superficial zones of articular cartilage.  J Anat. 1990;  171 117-130
  • 18 Clark J M. Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man.  J Orthop Res. 1991;  9 246-257
  • 19 Clark J M, Huber J D. The structure of the human subchondral plate.  J Bone Joint Surg [Br]. 1990;  72 866-873
  • 20 Clarke I C. Articular cartilage: review and scanning electron microscope study. 1. The interterritorial fibrillar architecture.  J Bone Joint Surg [Br]. 1971;  53 732-750
  • 21 Collins D H. Histology and physiology of bone, cartilage, synovial tissue and joint fluid. In: The Pathology of Articular and Spinal Diseases. Edward Arnold & Co, London 1949; 7-35
  • 22 Comper W D. Physiochemical Aspects of Cartilage Extracellular Matrix. In: Hall B, Newman S (eds). Cartilage: Molecular aspects. CRC Press, Boca Raton 1991; 59-96
  • 23 Deak F, Wagener R, Kiss I, Paulsson M. The matrilins: a novel family of oligomeric extracellular matrix proteins.  Matrix Biol. 1999;  18 55-64
  • 24 DiCesare P E, Morgelin M, Carlson C S, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein: isolation and characterization from human articular cartilage.  J Orthop Res. 1995;  13 422-428
  • 25 Duance V C. Surface of articular cartilage: immunohistological studies.  Cell Biochem Funct. 1983;  1 143-144
  • 26 Duncan H, Jundt J, Riddle J M, Pitchford W, Christopherson T. The tibial subchondral plate. A scanning electron microscopic study.  J Bone Joint Surg [Am]. 1987;  69 1212-1220
  • 27 Durrant L A, Archer C W, Benjamin M, Ralphs J R. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture.  J Anat. 1999;  194 (Pt 3) 343-353
  • 28 Eggli P S, Hunziker E B, Schenk R K. Quantitation of structural features characterizing weight- and less-weight bearing regions in articular cartilage: A stereological analysis of medial femoral condylus in young adult rabbits.  Anat Rec. 1988;  222 217-227
  • 29 Eikenberry E F, Mendler M, Bürgin R, Winterhalter K H, Bruckner P. Fibrillar Organization in Cartilage. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds). Articular Cartilage and Osteoarthritis. Raven Press, New York 1991; 133-148
  • 30 Engfeldt B, Hjertquist S O. Studies on the epiphysial growth zone. I. The preservation of acid glycosaminoglycans in tissues in some histotechnical procedures for electron microscopy.  Virchows Arch B Cell Pathol. 1968;  1 222-229
  • 31 Feller B, Merker H J. Electron microscopic study of the effect of colchicine on limb bud cartilage in organ culture (mouse embryo).  Acta Anat. 1979;  103 445-460
  • 32 Frenkel S R, Di Cesare P E. Degradation and repair of articular cartilage.  Front Biosci. 1999;  4 D671-D685
  • 33 Ghadially F N. Articular cartilage. In: Ghadially FN (eds). Fine Structure of Synovial Joints. A Text and Atlas of the Ultrastructure of Normal and Pathological Articular Tissues. Butterworths, London 1983; 42-79
  • 34 Ghadially F N. The articular surface. In: Ghadially FN (eds). Fine Structure of Synovial Joints. A Text and Atlas of the Ultrastructure of Normal and Pathological Articular Tissues. Butterworths, London 1983; 80-102
  • 35 Ghadially F N. Extracellular matrix (Extracellular components). In: Ghadially FN (eds). Ultrastructural Pathology of the Cell and Matrix. Butterworth-Heinemann, Boston 1997; 1307-1414
  • 36 Ghadially F N. Intermediate filaments of normal and pathological states (including neoplastic). In: Ghadially FN (eds). Ultrastructural Pathology of the Cell and Matrix. Butterworth-Heinemann, Boston 1997; 936-955
  • 37 Hale J E, Wuthier R E. The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation.  J Biol Chem. 1987;  262 1916-1925
  • 38 Hall M C. Cartilage changes after experimental relief of contact in the knee joint of the mature rat.  Clin Orthop Relat Res. 1969;  64 64-76
  • 39 Hamerman D, Schubert M. Diarthrodial joints, an essay.  Am J Med. 1962;  33 555-590
  • 40 Hart J AL. Cilia in articular cartilage.  J Anat. 1968;  103 222
  • 41 Heinegard D K, Pimentel E R. Cartilage Matrix Proteins. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds). Articular Cartilage and Osteoarthritis. Raven Press, New York 1991; 95-111
  • 42 Hewitt A T, Kleinman H K, Pennypacker J P, Martin G R. Identification of an adhesion factor for chondrocytes.  Proc Natl Acad Sci USA. 1980;  77 385-388
  • 43 Hing W A, Sherwin A F, Poole C A. The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge.  Osteoarthritis Cartilage. 2002;  10 297-307
  • 44 Hunter W. On the structure and diseases of articulating cartilage.  Philos Trans R Soc Lond B Biol Sci. 1743;  42 514-522
  • 45 Hunziker E B, Herrmann W. Ultrastructure of cartilage. In: Bonucci E, Motta PM (eds). Ultrastructure of Skeletal Tissues - Bones and Cartilage in Health and Disease. Kluwer Academics Pub., Norwell 1990; 79-110
  • 46 Hunziker E B, Herrmann W, Cruz-Orive L M, Arsenault A L. Image analysis of electron micrographs relating to mineralization in calcifying cartilage: theoretical considerations.  J Electron Microsc Tech. 1989;  11 9-15
  • 47 Hunziker E B, Herrmann W, Schenk R K. Improved cartilage fixation by ruthenium hexammine trichloride (RHT). A prerequisite for morphometry in growth cartilage.  J Ultrastruct Res. 1982;  81 1-12
  • 48 Hunziker E B, Herrmann W, Schenk R K. Ruthenium hexammine trichloride (RHT)-mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocytic plasma membranes in situ during cartilage fixation.  J Histochem Cytochem. 1983;  31 717-727
  • 49 Hunziker E B, Schenk R K. Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II. Intercellular matrix ultrastructure - preservation of proteoglycans in their native state.  J Cell Biol. 1984;  98 277-282
  • 50 Hunziker E B, Wagner J, Studer D. Vitrified articular cartilage reveals novel ultrastructural features respecting extracellular matrix architecture.  Histochem Cell Biol. 1996;  106 375-382
  • 51 Janmey P A, Euteneuer U, Traub P, Schliwa M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.  J Cell Biol. 1991;  113 155-160
  • 52 Jeffery A K, Blunn G W, Archer C W, Bentley G. Three-dimensional collagen architecture in bovine articular cartilage.  J Bone Joint Surg [Br]. 1991;  73 795-801
  • 53 Jensen C G, Poole C A, McGlashan S R, Marko M, Issa Z I, Vujcich K V, Bowser S S. Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ.  Cell Biol Int. 2004;  28 101-110
  • 54 Jortikka M O, Parkkinen J J, Inkinen R I, Karner J, Jarvelainen H T, Nelimarkka L O, Tammi M I, Lammi M J. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure.  Arch Biochem Biophys. 2000;  374 172-180
  • 55 Kaab M J, Gwynn I A, Notzli H P. Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species.  J Anat. 1998;  193 (Pt 1) 23-34
  • 56 Kaab M J, Ito K, Rahn B, Clark J M, Notzli H P. Effect of mechanical load on articular cartilage collagen structure: a scanning electron-microscopic study.  Cells Tissues Organs. 2000;  167 106-120
  • 57 Lane J M, Weiss C. Review of articular cartilage collagen research.  Arthritis Rheum. 1975;  18 553-562
  • 58 Langelier E, Suetterlin R, Hoemann C D, Aebi U, Buschmann M D. The chondrocyte cytoskeleton in mature articular cartilage: Structure and distribution of actin, tubulin, and vimentin filaments.  J Histochem Cytochem. 2000;  48 1307-1320
  • 59 Liu J, Sekiya I, Asai K, Tada T, Kato T, Matsui N. Biosynthetic response of cultured articular chondrocytes to mechanical vibration.  Res Exp Med. 2001;  200 183-193
  • 60 Loty S, Sautier J M, Forest N. Phenotypic modulation of nasal septal chondrocytes by cytoskeleton modification.  Biorheology. 2000;  37 117-125
  • 61 Luft J H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action.  Anat Rec. 1971;  171 347-368
  • 62 Luft J H. Ruthenium red and violet. II. Fine structural localization in animal tissues.  Anat Rec. 1971;  171 369-415
  • 63 Marlovits S, Vécsei V. Möglichkeiten zur Therapie von Knorpledefekten - Teil 1: Grundlagen der Knorpelbiologie und der Heilung von Knorpeldefekten.  Acta Chir Austriaca. 2000;  320 124-129
  • 64 Mazhuga P M, Cherkasov V V. Adaptive distribution of specific biosyntheses in a homogeneous population of the articular cartilage chondrocytes.  Z Mikrosk Anat Forsch. 1974;  88 364-374
  • 65 Minns R J, Steven F S. The collagen fibril organization in human articular cartilage.  J Anat. 1977;  123 (Pt 2) 437-457
  • 66 Moskalewski S, Thyberg J, Lohmander S, Friberg U. Influence of colchicine and vinblastine on the Golgi complex and matrix deposition in chondrocyte aggregates.  Exp Cell Res. 1975;  95 440-445
  • 67 O'Connor K M. Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats.  J Bone Miner Res. 1997;  12 580-589
  • 68 Oster G F, Perelson A S. The physics of cell motility.  J Cell Sci. 1987;  8 35-54
  • 69 Palfrey A J, Davies D V. The fine structure of chondrocytes.  J Anat. 1966;  100 213-226
  • 70 Parton R G. Caveolae and caveolins.  Curr Opin Cell Biol. 1996;  8 542-548
  • 71 Pieper K S, Fehrmann P, Vergani G, Herrmann M. On the functional organisation of hyaline articular cartilage.  Ital J Anat Embryol. 1995;  100 (Suppl 1) 113-119
  • 72 Pieper K S, Vergani G, Fehrmann P, Dramm P, Herrmann M. Time course of glycogen synthesis of chondrocytes in articular cartilage layers of sheep subsequent to relaxation of pressure. In: Tammi R, Sorvari R (ed). Extended Abstracts of the 46th Ann Meet Scand Soc Electromicroscopy. Kuopio-Finland 1994; 72-73
  • 73 Poole A R, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair.  Clin Orthop Relat Res. 2001;  (391 Suppl) S26-S33
  • 74 Poole C A. Chondrons: The chondrocyte and its pericellular microenvironment. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds). Articular Cartilage and Osteoarthritis. Raven Press, New York 1991; 201-220
  • 75 Poole C A. The structure and function of articular cartilage matrices. In: Woessner JF and Howell DS (eds). Joint Cartilage Degradation. Basic and Clinical Aspects. Marcel Dekker, Inc., New York 1993; 1-33
  • 76 Poole C A. Articular cartilage chondrons: Form, function and failure.  J Anat. 1997;  191 (Pt 1) 1-13
  • 77 Poole C A, Ayad S, Gilbert R T. Chondrons from articular cartilage. V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy.  J Cell Sci. 1992;  103 (Pt 4) 1101-1110
  • 78 Poole C A, Flint M H, Beaumont B W. Morphological and functional interrelationships of articular cartilage matrices.  J Anat. 1984;  138 (Pt 1) 113-138
  • 79 Poole C A, Flint M H, Beaumont B W. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages.  J Orthop Res. 1987;  5 509-522
  • 80 Poole C A, Flint M H, Beaumont B W. Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure.  J Orthop Res. 1988;  6 408-419
  • 81 Poole C A, Glant T T, Schofield J R. Chondrons from articular cartilage. (IV). Immunolocalization of proteoglycan epitopes in isolated canine tibial chondrons.  J Histochem Cytochem. 1991;  39 1175-1187
  • 82 Poole C A, Honda T, Skinner S J, Schofield J R, Hyde K F, Shinkai H. Chondrons from articular cartilage (II): Analysis of the glycosaminoglycans in the cellular microenvironment of isolated canine chondrons.  Connect Tissue Res. 1990;  24 319-330
  • 83 Poole C A, Jensen C G, Snyder J A, Gray C G, Hermanutz V L, Wheatley D N. Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells.  Cell Biol Int. 1997;  21 483-494
  • 84 Poole C A, Zhang Z J, Ross J M. The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes.  J Anat. 2001;  199 (Pt 4) 393-405
  • 85 Ralphs J R, Benjamin M, Lewis A, Archer C W. Cytokeratin expression in articular chondrocytes.  Trans Orth Res Soc. 1993;  18 616
  • 86 Rasmussen H, Barrett P Q. Calcium messenger system: an integrated view.  Physiol Rev. 1984;  64 938-984
  • 87 Rasmussen H, Barrett P Q. Calcium messenger system: an integrated view.  Physiol Rev. 1984;  64 938-984
  • 88 Redler I, Mow V C, Zimny M L, Mansell J. The ultrastructure and biomechanical significance of the tidemark of articular cartilage.  Clin Orthop Relat Res. 1975;  (212) 357-362
  • 89 Roach H I, Aigner T, Kouri J B. Chondroptosis: a variant of apoptotic cell death in chondrocytes?.  Apoptosis. 2004;  9 265-277
  • 90 Ruiz-Romero C, Lopez-Armada M J, Blanco F J. Proteomic characterization of human normal articular chondrocytes: A novel tool for the study of osteoarthritis and other rheumatic diseases.  Proteomics. 2005;  5 3048-3059
  • 91 Scherft J P, Daems W T. Single cilia in chondrocytes.  J Ultrastruct Res. 1967;  19 546-555
  • 92 Schofield B H, Williams B R, Doty S B. Alcian Blue staining of cartilage for electron microscopy. Application of the critical electrolyte concentration principle.  Histochem J. 1975;  7 139-149
  • 93 Schwab W, Hempel U, Funk R H, Kasper M. Ultrastructural identification of caveolae and immunocytochemical as well as biochemical detection of caveolin in chondrocytes.  Histochem J. 1999;  31 315-320
  • 94 Schwarz I M, Hills B A. Surface-active phospholipid as the lubricating component of lubricin.  Braz J Med Biol Res. 1998;  37 21-26
  • 95 Shepard N, Mitchell N. Simultaneous localization of proteoglycan by light and electron microscopy using toluidine blue O. A study of epiphyseal cartilage.  J Histochem Cytochem. 1976;  24 621-629
  • 96 Shepard N, Mitchell N. The localization of proteoglycan by light and electron microscopy using safranin O. A study of epiphyseal cartilage.  J Ultrastruct Res. 1976;  54 451-460
  • 97 Shepard N, Mitchell N. The use of ruthenium and p-phenylenediamine to stain cartilage simultaneously for light and electron microscopy.  J Histochem Cytochem. 1977;  25 1163-1168
  • 98 Stockwell R A. The cell density of human articular and costal cartilage.  J Anat. 1967;  101 753-763
  • 99 Stockwell R A. The lipid and glycogen content of rabbit articular hyaline and non-articular hyaline cartilage.  J Anat. 1967;  102 87-94
  • 100 Stockwell  (ed) R A. Cartilage degeneration, calcification and chondrocyte death. Cambridge University Press, Cambridge 1979; 241-265
  • 101 Stockwell R A. Chondrocyte nutrition, cartilage boundaries and permeability. In: Stockwell RA (ed). Biology of Cartilage Cells. Cambridge University Press, Cambridge 1979; 124-178
  • 102 Stockwell R A. Chondrocyte structure. In: Stockwell RA (ed). Biology of Cartilage Cells. Cambridge University Press, Cambridge 1979; 7-31
  • 103 Stockwell R A. The pericellular environment. In: Stockwell RA (ed). Biology of cartilage cells. Cambridge University Press, Cambridge 1979; 32-80
  • 104 Stoltz J F, Dumas D, Wang X, Payan E, Mainard D, Paulus F, Maurice G, Netter P, Muller S. Influence of mechanical forces on cells and tissues.  Biorheology. 2000;  37 3-14
  • 105 Takahashi I, Nuckolls G H, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin H C. Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells.  J Cell Sci. 1998;  111 (Pt 14) 2067-2076
  • 106 Thyberg J, Friberg U. Ultrastructure and acid phosphatase. Activity of matrix vesicles and cytoplasmic dense bodies in the epiphyseal plate.  J Ultrastruct Res. 1970;  33 554-573
  • 107 Trickey W R, Vail T P, Guilak F. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes.  J Orthop Res. 2004;  22 131-139
  • 108 Ugryumova N, Attenburrow D P, Winlove C P, Matcher S J. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography.  J Phys D Appl Phys. 2005;  38 2612-2619
  • 109 Van Mow C, Fithian D C, Kelly M A. Fundamentals of articular cartilage and meniscus biomechanics. In: Ewing JW (ed). Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy. Raven Press, New York 1990; 1-18
  • 110 Vasara A I, Jurvelin J S, Peterson L, Kiviranta I. Arthroscopic cartilage indentation and cartilage lesions of anterior cruciate ligament-deficient knees.  Am J Sports Med. 2005;  33 408-414
  • 111 Wilsman N J. Cilia of adult canine articular chondrocytes.  J Ultrastruct Res. 1978;  64 270-281
  • 112 Wilsman N J, Farnum C E, Reed-Aksamit D K. Caveolar system of the articular chondrocyte.  J Ultrastruct Res. 1981;  74 1-10
  • 113 Zanetti N C, Solursh M. Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton.  J Cell Biol. 1984;  99 (Pt 1) 115-123

Mag. S. Nürnberger

Medical University of Vienna Department of Traumatology

Waehringer Guertel 18-20

1090 Vienna

Austria

Phone: +43/1/4 04 00 59 44

Email: sylvia.nuernberger@meduniwien.ac.at

    >