ABSTRACT
Exaggerated erythropoiesis and megakaryocytopoiesis are present at a variable extent
in polycythemia vera (PV) and essential thrombocythemia (ET). With the recent discovery
of the V617F mutation in the Janus kinase 2 (JAK2) tyrosine kinase in almost all cases
of PV and in a subset of patients with ET, studies are now pending to assess the role
of this mutation in the hematopoietic cell activation process and/or in the occurrence
of thromboses in ET and PV. The JAK2 V617F point mutation makes the normal hematopoietic
progenitor cells hypersensitive to thrombopoietin, erythropoietin, and myeloid progenitor
cells, leading to trilinear hematopoietic myeloproliferation. This will have three
main clinical consequences during long-term follow-up. First, spontaneous growth of
enlarged mature megakaryocytes in ET/PV with overproduction of hypersensitive platelets
results in a broad spectrum of platelet-mediated microvascular circulatory disturbances,
which are very sensitive to low-dose aspirin. Second, spontaneous growth of erythropoiesis
with the overproduction of erythrocytes leads to classic PV with increased hemoglobin,
hematocrit, and red cell mass. This is associated with a high frequency of major arterial
and venous thrombotic complications in addition to platelet-mediated microvascular
circulatory disturbances of thrombocythemia. Third, the slowly progressive myeloid
(granulocytic) metaplasia in bone marrow and spleen is complicated by secondary myelofibrosis
caused by a megakaryocytic/granulocytic cytokine storm in about one fourth to one
third of JAK2 V617F-positive PV patients after long-term follow-up, with no tendency
of leukemic transformation as long as they are not treated with myelosuppressive agents.
Randomized clinical trials directly comparing phlebotomy versus hydroxyurea or interferon
α versus hydroxyurea in PV with progressive disease are lacking. Heterozygous V617F
mutation is enough to produce the clinical picture of ET with a slight tendency to
increased hemoglobin and hematocrit (early PV mimicking ET). Homozygous V617F mutation
is associated with the clinical picture of classic PV and with a higher tendency to
secondary myelofibrosis, but with no increased leukemia unless other biological or
genetic factors come into play, such as myelosuppressive agents or the acquisition
of additional biologic or genetic defects. Depending on the biological background
of individual patients, heterozygous and homozygous JAK2 V617F ET/PV may preferentially
induce myeloid metaplasia with myelofibrosis with a relative suppression of megakaryocytic
and erythropoietic myeloproliferation leading to clinical pictures of fibrotic chronic
idiopathic myelofibrosis (CIMF) or agnogenic myeloid metaplasia. The main conclusion
is that JAK2 V617F is a 100% specific clue to a new distinct clonal myeloproliferative
disorder. JAK2 V617F-positive ET/PV and CIMF should be distinguished from wild-type
JAK2 ET, rare cases of PV, and CIMF, and should be evaluated during life-long follow-up.
KEYWORDS
Essential thrombocythemia - polycythemia vera - myeloproliferative disorders - platelet
activation - thrombosis - leukocyte/platelet activation
REFERENCES
1
Vaquez M H.
Sur une forme speciale de cyanose accompagnée d'hyperglobulie excessive et persitante.
Comptes Rendues des Seances de la Societé de Biologie.
1892;
44
384-388
2
Osler W.
Chronic cyanosis with polycythaemia and enlarged spleen. A new clinical entity.
Am J Med Sci.
1903;
126
187-201
3 Moschowitz E. Biology of Disease. New York; Grune and Stratton 1948: 48-60
4
Rosenthal M C.
Extramedullary hematopoiesis: myeloid metaplasia.
Bull New Engl Med Cent.
1950;
12
154-160
5
Dameshek W.
Physiopathology and course of polycythemia vera as related to therapy.
JAMA.
1950;
18
790-797
6
James C, Ugo V, Le Couedic P F et al..
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia
vera.
Nature.
2005;
434
1144-1148
7
James C, Ugo V, Casadevall N, Constantinescu S N, Vainchenker W A.
JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific
prospects.
Trends Mol Med.
2005;
11
546-554
8
Vainchenker W, Constantinescu S N.
A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera
and allows a new classification of myeloproliferative diseases.
Hematology (Am Soc Hematol Educ Program).
2005;
195-200
9
Pearson T C, Messinezy M.
The diagnosis criteria of polycythemia rubra vera.
Leuk Lymphoma.
1996;
22(suppl 1)
87-93
10
Berlin N I.
Diagnosis and classification of the polycythemias.
Semin Hematol.
1975;
12
339-351
11
Murphy S, Peterson P, Iland H et al..
Experience of the polycythemia vera study group with essential thrombocythemia: a
final report on diagnostic criteria, survival, and leukemic transition by treatment.
Semin Hematol.
1997;
34
29-39
12
Baxter E J, Scott L M, Campbell P J et al..
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.
Lancet.
2005;
365
1054-1061
13
Levine R L, Wadleigh M, Cools J et al..
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia,
and myeloid metaplasia with myelofibrosis.
Cancer Cell.
2005;
7
387-397
14
Kralovics R, Passamonti F, Buser A S et al..
A gain-of-function mutation of JAK2 in myeloproliferative disorders.
N Engl J Med.
2005;
352
1779-1790
15
Zhao R, Xing S, Li Z et al..
Identification of an acquired JAK2 mutation in polycythemia vera.
J Biol Chem.
2005;
280
22788-22792
16
Staerk J, Kallin A, Demoulin J B, Vainchenker W, Constantinescu S N.
JAK1 and TYK2 activation by homologous polycythemia vera JAK2 V617F mutation: cross
talk with IGF1 receptor.
J Biol Chem.
2005;
280
41893-41899
17
Kaushansky K.
On the origin of the chronic myeloproliferative disorders: it makes all sense.
Blood.
2005;
105
4187-4190
18
Goldman J M.
A unifying mutation in chronic myeloproliferative disorders.
N Engl J Med.
2005;
352
1744-1745
19
Cazzola M, Skoda R.
Gain of function, loss of control. A molecular basis for chronic myeloproliferative
disorders.
Haematologica.
2005;
90
871-874
20
Lu X, Levine R, Wernig G, Pikman Y, Zarnegar S, Gilliland D G.
Expression of a homodimeric type I cytokine receptor is required for JAK2 V617F-mediated
transformation.
Proc Natl Acad Sci USA.
2005;
102
18962-18967
21
Michiels J J, Berneman Z, Van Bockstaele D, van der Planken M, De Raeve H, Schroyens W.
Clinical and laboratory features, pathobiology of platelet-mediated microvascular
disturbances, major thrombosis and bleeding complications and the molecular etiology
of essential thrombocythemia and polycythemia vera.
Semin Thromb Hemost.
2006;
32
174-207
22
Ellis J T, Silver R T, Coleman M, Geller S A.
The bone marrow in polycythemia vera.
Semin Hematol.
1975;
12
433-444
23
Lengfelder E, Hochhaus A, Kronawitter U et al..
Should a platelet limit of 600 × 10/L be used as a diagnostic criterion in essential
thrombocythaemia?.
Br J Haematol.
1998;
100
15-23
24
Kiladjian J J, Elkassar N, Hetet G, Balitrand N et al..
Analysis of JAK2 mutation in essential thrombocythemia (ET) patients with monoclonal
and polyclonal X-chromosome inactivation patterns (XCIPs).
Leukemia.
2006;
, In press
25
Campbell P, Scott L M, Buck G et al..
Definition of essential thrombocythemia and relation of essential thrombocythemia
to polycythaemia vera based on JAK2 V617F mutation status: a prospective study.
Lancet.
2005;
366
1945-1953
26
Prchal J F, Axelrad A A.
Bone-marrow responses in polycythemia vera.
N Engl J Med.
1974;
290
1382
27
Weinberg R S.
In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders.
Semin Hematol.
1997;
34
64-69
28
Kralovics R, Prchal J T.
Haematopoietic progenitors and signal transduction in polycythaemia vera and primary
thrombocythaemia.
Baillieres Clin Haematol.
1998;
11
803-818
29
Weinberg R S, Worsley A, Gilbert H S, Cuttner J, Berk P D, Alter B P.
Comparison of erythroid progenitor cell growth in vitro in polycythemia vera and chronic
myelogenous leukemia: only polycythemia vera has endogenous colonies.
Leuk Res.
1989;
13
331-338
30
Kralovics R, Buser A S, Teo S S et al..
Comparison of molecular markers in a cohort of patients with chronic myeloproliferative
disorders.
Blood.
2003;
102
1869-1871
31
Dobo I, Boiret N, Lippert E et al..
A standardized endogenous megakaryocytic erythroid colony assay for the diagnosis
of essential thrombocythemia.
Haematologica.
2004;
89
1207-1212
32
Correa P N, Eskenazi D, Axellrad A A.
Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like
grown factor-1 in vitro: studies in an improved serum-free medium.
Blood.
1994;
83
99-112
33
Dai C H, Krantz S B, Dessypris E N, Means Jr R T, Horn S T, Gilbert H S.
Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage,
and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating
factor.
Blood.
1992;
80
891-899
34
Ugo V, Marzac C, Teyssandier I et al..
Multiple signaling pathways are involved in erythropoietin-independent differentiation
of erythroid progenitors in polycythemia vera.
Exp Hematol.
2004;
32
179-187
35
Shih L Y, Lee C T.
Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis
by endogenous erythroid colony assay.
Blood.
1994;
83
744-748
36
Liu E, Jelinek J, Pastore Y D, Guan Y, Prchal J F, Prchal J T.
Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality
assays and comparison with PRV-1 expression and BFU-E response to erythropoietin.
Blood.
2003;
101
3294-3301
37
Juvonen E, Ikkala E, Oksanen K, Ruutu T.
Megakaryocyte and erythroid colony formation in essential thrombocythaemia and reactive
thrombocytosis: diagnostic value and correlation to complications.
Br J Haematol.
1993;
83
192-197
38
Spinelli O, Rota B, Finazzi G, Barbui T, Rambaldi A.
Quantitative analysis of PRV-1 gene expression in chronic myeloproliferative disorders:
positive correlation with polycythemia vera diagnosis and leukocyte alkaline phosphatase
expression.
Blood.
2002;
100(suppl 1)
3145a
39
Lippert E, Girodon F, Kralovics R et al..
Quantitative analysis of wild type and V617F JAK2 expression in neutrophils of Polycythemia
Vera and Essential Thrombocythemia patients at diagnosis.
Blood.
2005;
106
78a-257 (abst)
40
Battegay E J, Thomssen C, Nissen C, Gudat F, Speck B.
Endogenous megakaryocyte colonies from peripheral blood in precursor cell cultures
of patients with myeloproliferative disorders.
Eur J Haematol.
1989;
42
321-326
41
Kimura H, Ishibashi T, Sato T, Matsuda S, Uchida T, Kariyone S.
Megakaryocytic colony formation (CFU-Meg) in essential thrombocythemia: quantitative
and qualitative abnormalities of bone marrow CFU-Meg.
Am J Hematol.
1987;
24
23-30
42
Mazur E M, Cohen J L, Bogart L.
Growth characteristics of circulating hematopoietic progenitor cells from patients
with essential thrombocythemia.
Blood.
1988;
71
1544-1550
43
Han Z C, Briere J, Nedellec G et al..
Characteristics of circulating megakaryocyte progenitors (CFU-MK) in patients with
primary myelofibrosis.
Eur J Haematol.
1988;
40
130-135
44
Michiels J J, Juvonen E.
Proposal for revised diagnostic criteria of essential thrombocythemia and polycythemia
vera by the Thrombocythemia Vera Study group.
Semin Thromb Hemost.
1997;
23
339-347
45
Li Y, Hetet G, Maurer A M, Chait Y, Dhermy D, Briere J.
Spontaneous megakaryocyte colony formation in myeloproliferative disorders is not
neutralizable by antibodies against IL3, IL6 and GM-CSF.
Br J Haematol.
1994;
87
471-476
46
Florensa L, Besses C, Almarcha J et al..
Circulating erythroid and megakaryocytic progenitors in polycythaemia vera and essential
thrombocythaemia.
Eur J Haematol.
1989;
43
417-422
47
Taksin A L, Couedic J P, Dusanter-Fourt I et al..
Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis
is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L.
Blood.
1999;
93
125-139
48
Kiladjian J J, Elkassar N, Hetet G, Briere J, Grandchamp B, Gardin C.
Study of the thrombopoietin receptor in essential thrombocythemia.
Leukemia.
1997;
11
1821-1826
49
Li Y, Hetet G, Kiladjian J J, Gardin C, Grandchamp B, Briere J.
Proto-oncogene c-mpl is involved in spontaneous megakaryocytopoiesis in myeloproliferative
disorders.
Br J Haematol.
1996;
92
60-66
50
Han Z C, Bellucci S, Tenza D, Caen J P.
Negative regulation of human megakaryocytopoiesis by human platelet factor 4 and beta
thromboglobulin: comparative analysis in bone marrow cultures from normal individuals
and patients with essential thrombocythaemia and immune thrombocytopenic purpura.
Br J Haematol.
1990;
74
395-401
51
Han Z C, Sensebe L, Abgrall J F, Briere J.
Platelet factor 4 inhibits human megakaryocytopoiesis in vitro.
Blood.
1990;
75
1234-1239
52
Han Z C, Maurer A M, Bellucci S et al..
Inhibitory effect of platelet factor 4 (PF4) on the growth of human erythroleukemia
cells: proposed mechanism of action of PF4.
J Lab Clin Med.
1992;
120
645-660
53
Kobayashi S, Teramura M, Hoshino S, Motoji T, Oshimi K, Mizoguchi H.
Circulating megakaryocyte progenitors in myeloproliferative disorders are hypersensitive
to interleukin-3.
Br J Haematol.
1993;
83
539-544
54
Axelrad A A, Eskinazi D, Correa P N, Amato D.
Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development
factor (PEG-rHu MGDF) in essential thrombocythemia.
Blood.
2000;
96
3310-3321
55
Li J, Yang C, Xia Y et al..
Thrombocytopenia caused by the development of antibodies to thrombopoietin.
Blood.
2001;
98
3241-3248
56
Horikawa Y, Matsumura I, Hashimoto K et al..
Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia.
Blood.
1997;
90
4031-4038
57
von dem Borne A E, Folman C, Linthorst G E et al..
Thrombopoietin: its role in platelet disorders and as a new drug in clinical medicine.
Baillieres Clin Haematol.
1998;
11
427-445
58
Hirayama Y, Sakamaki S, Matsunaga T et al..
Concentrations of thrombopoietin in bone marrow in normal subjects and in patients
with idiopathic thrombocytopenic purpura, aplastic anemia, and essential thrombocythemia
correlate with its mRNA expression of bone marrow stromal cells.
Blood.
1998;
92
46-52
59
Fielder P J, Gurney A L, Stefanich E et al..
Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets.
Blood.
1996;
87
2154-2161
60
Gurney A L, Wong S C, Henzel W J, de Sauvage F J.
Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction
pathway and Shc phosphorylation.
Proc Natl Acad Sci USA.
1995;
92
5292-5296
61
Bellucci S, Michiels J J.
Spontaneous proliferative megakaryocytopoiesis and platelet hyperreactivity in essential
thrombocythemia: is thrombopoietin the link?.
Ann Hematol.
2000;
79
51-58
62
Preston F E, Martin J F, Stewart R M, Davies-Jones G A.
Thrombocytosis, circulating platelet aggregates, and neurological dysfunction.
BMJ.
1979;
2
1561-1563
63
Mehta P, Mehta J, Ross M, Ostrowski N, Player D.
Decreased platelet aggregation but increased thromboxane A2 generation in polycythemia
vera.
Arch Intern Med.
1985;
145
1225-1227
64
Vreeken J, van Aken W G.
Spontaneous aggregation of blood platelets as a cause of idiopathic thrombosis and
recurrent painful toes and fingers.
Lancet.
1971;
2
1395-1397
65
Wu K K.
Platelet hyperaggregability and thrombosis in patients with thrombocythemia.
Ann Intern Med.
1978;
88
7-11
66
Bellucci S, Janvier M, Tobelem G et al..
Essential thrombocythemias. Clinical evolutionary and biological data.
Cancer.
1986;
58
2440-2447
67
van Genderen P J, Michiels J J, Zijlstra F J.
Lipoxygenase deficiency in primary thrombocythemia is not a true deficiency.
Thromb Haemost.
1994;
71
803-804
68
Bellucci S, Ignatova E, Jaillet N, Boffa M C.
Platelet hyperactivation in patients with essential thrombocythemia is not associated
with vascular endothelial cell damage as judged by the level of plasma thrombomodulin,
protein S, PAI-1, t-PA and vWF.
Thromb Haemost.
1993;
70
736-742
69
Boughton B J, Allington M J, King A.
Platelet and plasma beta thromboglobulin in myeloproliferative syndromes and secondary
thrombocytosis.
Br J Haematol.
1978;
40
125-132
70
Grossi A, Vannucchi A M, Rafanelli D, Filimberti E, Rossi Ferrini P.
Beta-thromboglobulin content in megakaryocytes of patients with myeloproliferative
diseases.
Thromb Res.
1986;
43
367-374
71
Najean Y, Poirier O, Lokiec F.
The clinical significance of beta-thromboglobulin and platelet factor-4 in polycythaemic
patients.
Scand J Haematol.
1983;
31
298-304
72
van Genderen P J, Lucas I S, van Strik R et al..
Erythromelalgia in essential thrombocythemia is characterized by platelet activation
and endothelial cell damage but not by thrombin generation.
Thromb Haemost.
1996;
76
333-338
73
Griesshammer M, Beneke H, Nussbaumer B, Grunewald M, Bangerter M, Bergmann L.
Increased platelet surface expression of P-selectin and thrombospondin as markers
of platelet activation in essential thrombocythaemia.
Thromb Res.
1999;
96
191-196
74
Thibert V, Bellucci S, Cristofari M, Gluckman E, Legrand C.
Increased platelet CD36 constitutes a common marker in myeloproliferative disorders.
Br J Haematol.
1995;
91
618-624
75
Jensen M K, de Nully Brown P, Lund B V, Nielsen O J, Hasselbalch H C.
Increased platelet activation and abnormal membrane glycoprotein content and redistribution
in myeloproliferative disorders.
Br J Haematol.
2000;
110
116-124
76
Rocca B, Ciabattoni G, Tartaglione R et al..
Increased thromboxane biosynthesis in essential thrombocythemia.
Thromb Haemost.
1995;
74
1225-1230
77
van Genderen P J, Prins F J, Michiels J J, Schror K.
Thromboxane-dependent platelet activation in vivo precedes arterial thrombosis in
thrombocythaemia: a rationale for the use of low-dose aspirin as an antithrombotic
agent.
Br J Haematol.
1999;
104
438-441
78
Landolfi R, Ciabattoni G, Patrignani P et al..
Increased thromboxane biosynthesis in patients with polycythemia vera: evidence for
aspirin-suppressible platelet activation in vivo.
Blood.
1992;
80
1965-1971
79
Van Genderen P JJ, Michiels J J, van Strik R, Lindemans J, van Vliet H HDM.
Platelet consumption in thrombocythemia complicated by erythromelalgia: reversal by
aspirin.
Thromb Haemost.
1995;
73
210-214
80
Michiels J J.
Erythromelalgia and thrombocythemia: a disease of platelet prostaglandin metabolism.
Thesis 1981, Rotterdam.
Semin Thromb Hemost.
1997;
23
335-338
81
Michiels J J, Abels J, Steketee J, van Vliet H HDM, Vuzevski V D.
Erythromelalgia caused by platelet-mediated arteriolar inflammation and thrombosis
in thrombocythemia.
Ann Intern Med.
1985;
102
466-471
82
Michiels J J, Koudstaal P, Mulder A H, van Vliet H HDM.
Transient neurologic and ocular manifestations in primary thombocythemia.
Neurology.
1993;
43
1107-1110
83
Michiels J J, Van Genderen P JJ, Janssen P HP, Koudstaal P.
Atypical transient ischemic attacks in thrombocythemia of various myeloproliferative
disorders.
Leuk Lymphoma.
1996;
22(suppl 1)
65-70
84
Michiels J J, Berneman Z, Schroyens W, Koudstaal P J, Lindemans J, van Vliet H HDM.
Platelet-mediated thrombotic complications in patients with ET: reversal by aspirin,
platelet reduction but not by coumadin.
Blood Cells Mol Dis.
2006;
36
199-205
85
Michiels J J.
Aspirin and platelet-lowering agents for the prevention of vascular complications
in essential thrombocythemia.
Clin Appl Thromb Hemost.
1999;
5
247-251
86
Chen J, Herceg-Harjacek L, Groopman J E, Grabarek J.
Regulation of platelet activation in vitro by the c-Mpl ligand, thrombopoietin.
Blood.
1995;
86
4054-4062
87
Usuki K, Iki S, Endo M et al..
Influence of thrombopoietin on platelet activation in myeloproliferative disorders.
Br J Haematol.
1997;
97
530-537
88
Finazzi G, Budde U, Michiels J J.
Bleeding time and platelet function in essential thrombocythemia and other myeloproliferative
disorders.
Leuk Lymphoma.
1996;
22(suppl 1)
71-78
89
Petrides P E, Siegel F.
Thrombotic complications in essential thrombocythemia (ET): clinical facts and biochemical
riddles.
Blood Cells Mol Dis.
2006;
, In press
90
Cesar J M, de Miguel D, Garcia Avello A, Burgaleta C.
Platelet dysfunction in primary thrombocythemia using the platelet function analyzer,
PFA-100.
Am J Clin Pathol.
2005;
123
772-777
91
Michiels J J.
Acquired von Willebrand Disease due to increasing platelet count can readily explain
the paradox of thrombosis and bleeding in thrombocythemia.
Clin Appl Thromb Hemost.
1999;
5
147-151
92
van Genderen P JJ, Budde U, Michiels J J, van Strik R, van Vliet H HDM.
The reduction of large von Willebrand factor multimers in plasma in essential thrombocythemia
is related to the platelet count.
Br J Haematol.
1996;
93
962-965
93 Van Genderen P JJ. Pathophysiological Aspects of Platelet-Mediated Thrombosis and
Bleeding in Essential Thrombocythemia [thesis]. Rotterdam, The Netherlands; Erasmus
University 1998
94
Troost M M, van Genderen P JJ.
Excessive prolongation of the Ivy bleeding time after aspirin in essential thrombocythemia
is also demonstrable in vitro in the high shear stress system PFA-100.
Ann Hematol.
2002;
81
352-353
95
Falanga A, Marchetti M, Evangelista V et al..
Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia
and polycythemia vera.
Blood.
2000;
96
4261-4266
96
Burgaleta C, Gonzalez N, Cesar J.
Increased CD11/CD18 expression and altered metabolic activity on polymorphonuclear
leukocytes from patients with polycythemia vera and essential thrombocythemia.
Acta Haematol.
2002;
108
23-28
97
Maugeri N, Evangelista V, Celardo A et al..
Polymorphonuclear leukocyte-platelet interaction: role of P-selectin in thromboxane
B2 and leukotriene C4 cooperative synthesis.
Thromb Haemost.
1994;
72
450-456
98
Jensen M K, de Nully Brown P, Lund B V, Nielsen O J, Hasselbalch H C.
Increased circulating platelet-leukocyte aggregates in myeloproliferative disorders
is correlated to previous thrombosis, platelet activation and platelet count.
Eur J Haematol.
2001;
66
143-151
99
Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T.
Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia
vera.
Exp Hematol.
2005;
33
523-530
100
Evangelista V, Celardo A, Dell'Elba G et al..
Platelet contribution to leukotriene production in inflammation: in vivo evidence
in the rabbit.
Thromb Haemost.
1999;
81
442-448
101
Maugeri N, Evangelista V, Piccardoni P et al..
Transcellular metabolism of arachidonic acid: increased platelet thromboxane generation
in the presence of activated polymorphonuclear leukocytes.
Blood.
1992;
80
447-451
102
Chlopicki S, Lomnicka M, Gryglewski R J.
Obligatory role of lipid mediators in platelet-neutrophil adhesion.
Thromb Res.
2003;
110
287-292
103
Falanga A, Marchetti M, Barbui T, Smith C W.
Pathogenesis of thrombosis in essential thrombocythemia and polycythemia vera: the
role of neutrophils.
Semin Hematol.
2005;
42
239-247
104
Falanga A, Marchetti M, Balducci D et al..
Distinct hemostatic profile of leucocytes in essential thrombocythemia (ET) carrying
the JAK2 V617F mutation.
Blood.
2005;
106
114a (378 abst)
105
Arellano-Rodrigo E, Alvarez-Larran A, Reverter J C, Villamor N, Colomer D, Cervantes F.
Increased platelet and leukocyte activation as contributing mechanisms for thrombosis
in essential thrombocythemia and correlation with the JAK2 mutational status.
Haematologica.
2006;
91
169-175
106
Blann A, Caine G, Bareford D.
Abnormal vascular, platelet and coagulation markers in primary thrombocythaemia are
not reversed by treatments that reduce the platelet count.
Platelets.
2004;
15
447-449
107
Karakantza M, Giannakoulas N C, Zikos P et al..
Markers of endothelial and in vivo platelet activation in patients with essential
thrombocythemia vera.
Int J Hematol.
2004;
79
253-259
108
Juvonen E, Ikkala E, Fyhrquist F, Ruutu T.
Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin.
Blood.
1991;
78
3066-3069
109
De La Chapelle A, Traskelin A L, Juvonen E.
Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis.
Proc Natl Acad Sci USA.
1993;
90
4495-4499
110
Barbui T, Finazzi G, de Gaetano et al..
Polycythemia vera: the natural history of 1213 patients followed for 20 years.
Ann Intern Med.
1995;
123
656-664
111
Fruchtman S M, Mack K, Kaplan M E, Peterson P, Berk P D, Wasserman L R.
From efficacy to safety: a Polycythemia Vera Study Group report on hydroxyurea in
patients with polycythemia vera.
Semin Hematol.
1997;
34
17-23
112 Berk P, Wasserman L R, Fruchtman S M, Goldberg J D.
Treatment of polycythemia vera: a summary of clinical trials conducted by the Polycythemia
Vera study Group . In.: Wasserman LR, Berk PD, Berlin NI Polycythemia Vera and the Myeloproliferative
Disorders. Philadelphia, PA; WB Saunders 1995
113
Pearson T C, Wetherley-Mein G.
Vascular occlusive episodes and venous hematocrit in primary proliferative polycythaemia.
Lancet.
1978;
2
1219-1222
114
Thomas D J, Marshall J, Russell R WR et al..
Cerebral blood-flow in polycythemia.
Lancet.
1977;
2
161-163
115
Thomas D J, du Boullat G H, Marshall J et al..
Effect of haematocrit on cerebral blood flow in man.
Lancet.
1977;
2
941-943
116
Landolfi R, Marchioli R, Kutti J et al..
Efficacy and safety of low-dose aspirin in polycythemia vera: results of the ECLAP
trial.
N Engl J Med.
2004;
350
114-124
117
Michiels J J, Barbui T, Finazzi G et al..
Diagnosis and treatment of polycythemia vera and possible future study designs of
the PVSG.
Leuk Lymphoma.
2000;
36
239-253
118
van Genderen P J, Mulder P G, Waleboer M, van de Moesdijk D, Michiels J J.
Prevention and treatment of thrombotic complications in essential thrombocythaemia:
efficacy and safety of aspirin.
Br J Haematol.
1997;
97
179-184
119
Besses C, Cervantes F, Pereira A et al..
Major vascular complications in essential thrombocythemia: a study of the predictive
factors in a series of 148 patients.
Leukemia.
1999;
13
150-154
120
Jantunen R, Juvonen E, Ikkala E, Oksanen K, Anttila P, Ruutu T.
The predictive value of vascular risk factors and gender for the development of thrombotic
complications in essential thrombocythemia.
Ann Hematol.
2001;
80
74-78
121
Watson K V, Key N.
Vascular complications of essential thrombocythaemia: a link to cardiovascular risk
factors.
Br J Haematol.
1993;
83
198-203
122
Amitrano L, Guardascione M A, Ames P R et al..
Thrombophilic genotypes, natural anticoagulants, and plasma homocysteine in myeloproliferative
disorders: relationship with splanchnic vein thrombosis and arterial disease.
Am J Hematol.
2003;
72
75-81
123
Ruggeri M, Gisslinger H, Tosetto A et al..
Factor V Leiden mutation carriership and venous thromboembolism in polycythemia vera
and essential thrombocythemia.
Am J Hematol.
2002;
71
1-6
124
Griesshammer M, Klippel S, Strunck E et al..
PRV-1 mRNA expression discriminates two types of essential thrombocythemia.
Ann Hematol.
2004;
83
364-370
125
Johansson P, Ricksten A, Wennström L, Palmqvist L, Kutti J, Andreasson B.
Increased risk for vascular complication in PRV-1 positive patients with essential
thrombocythemia.
Br J Haematol.
2003;
123
513-516
126
Goerttler P S, Steimle C, Marz E et al..
The Jak2V617F mutation, PRV-1 overexpression, and EEC formation define a similar cohort
of MPD patients.
Blood.
2005;
106
2862-2864
127
Wolanskyj A P, Lasho T L, Schwager S M et al..
JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic
relevance.
Br J Haematol.
2005;
131
208-213
128
Cheung B Y, Radia D H, Pantelidis P.
The presence of the V617F mutation is associated with higher haemoglobin, older age
and increased risk of thrombosis in essential thrombocythemia.
Blood.
2005;
106
985a-3531 (abst)
129
Finazzi G, Guerini V, Rambaldi A, Barbui T.
JAK2 Val 617 Phe mutation correlates with the risk of thrombosis in patients with
essential thrombocythemia.
Blood.
2005;
106
725a-2580 (abst)
130
Fiorini A, Reddiconto G, Farina G et al..
Clonality assay (X-CIP) and JAK2 V617F mutation: clustering patients with essential
thrombocythemia at high risk for thrombosis.
Blood.
2005;
106
730a-2597 (abst)
131
Bellucci S, Legrand C, Boval B, Drouet L, Caen J.
Studies of platelet volume, chemistry and function in patients with essential thrombocythaemia
treated with anagrelide.
Br J Haematol.
1999;
104
886-892
132
Cortelazzo S, Finazzi G, Ruggeri M et al..
Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis.
N Engl J Med.
1995;
332
1132-1136
133
Fruchtman S M, Petitt R M, Gilbert H S, Fiddler G, Lyne A. Anagrelide Study Group
.
Anagrelide: analysis of long-term efficacy, safety and leukemogenic potential in myeloproliferative
disorders.
Leuk Res.
2005;
29
481-491
134 Maugeri N, Giordano G, Petrilli M P, de Gaetano G, et al.. Leucocyte activation
in myeloproliferative disease. J Thromb Haemost. ISTH, Sydney. 2005: 1594 (abst)-0
135
Harrison C N, Campbell P J, Buck G et al..
Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia.
N Engl J Med.
2005;
353
33-45
136
Patrono C, Coller B, FitzGerald G A, Hirsh J, Roth G.
Platelet-active drugs: the relationships among dose, effectiveness, and side effects:
the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.
Chest.
2004;
126
234S-264S
Sylvia BellucciM.D. Ph.D.
Service d'Hematologie Biologique, Hôpital Lariboisière
2 rue Ambroise Paré, 75010 Paris, France
Email: sylvia.bellucci@lrb.ap-hop-paris.fr