Semin Thromb Hemost 2006; 32(4): 381-398
DOI: 10.1055/s-2006-942759
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Role of JAK2 V617F Mutation, Spontaneous Erythropoiesis and Megakaryocytopoiesis, Hypersensitive Platelets, Activated Leukocytes, and Endothelial Cells in the Etiology of Thrombotic Manifestations in Polycythemia Vera and Essential Thrombocythemia

Sylvia Bellucci1 , Jan J. Michiels2
  • 1AP-HP, Service d'Hematologie Biologique, Hôpital Lariboisière; Denis Diderot, Faculté de Médecine, Paris, France
  • 2Department of Hematology, University Hospital Antwerp, Antwerp, Belgium; Hemostasis Thrombosis and Vascular Research, Goodheart Institute Rotterdam, MPD Center Europe, Rottterdam, The Netherlands
Further Information

Publication History

Publication Date:
29 June 2006 (online)

ABSTRACT

Exaggerated erythropoiesis and megakaryocytopoiesis are present at a variable extent in polycythemia vera (PV) and essential thrombocythemia (ET). With the recent discovery of the V617F mutation in the Janus kinase 2 (JAK2) tyrosine kinase in almost all cases of PV and in a subset of patients with ET, studies are now pending to assess the role of this mutation in the hematopoietic cell activation process and/or in the occurrence of thromboses in ET and PV. The JAK2 V617F point mutation makes the normal hematopoietic progenitor cells hypersensitive to thrombopoietin, erythropoietin, and myeloid progenitor cells, leading to trilinear hematopoietic myeloproliferation. This will have three main clinical consequences during long-term follow-up. First, spontaneous growth of enlarged mature megakaryocytes in ET/PV with overproduction of hypersensitive platelets results in a broad spectrum of platelet-mediated microvascular circulatory disturbances, which are very sensitive to low-dose aspirin. Second, spontaneous growth of erythropoiesis with the overproduction of erythrocytes leads to classic PV with increased hemoglobin, hematocrit, and red cell mass. This is associated with a high frequency of major arterial and venous thrombotic complications in addition to platelet-mediated microvascular circulatory disturbances of thrombocythemia. Third, the slowly progressive myeloid (granulocytic) metaplasia in bone marrow and spleen is complicated by secondary myelofibrosis caused by a megakaryocytic/granulocytic cytokine storm in about one fourth to one third of JAK2 V617F-positive PV patients after long-term follow-up, with no tendency of leukemic transformation as long as they are not treated with myelosuppressive agents. Randomized clinical trials directly comparing phlebotomy versus hydroxyurea or interferon α versus hydroxyurea in PV with progressive disease are lacking. Heterozygous V617F mutation is enough to produce the clinical picture of ET with a slight tendency to increased hemoglobin and hematocrit (early PV mimicking ET). Homozygous V617F mutation is associated with the clinical picture of classic PV and with a higher tendency to secondary myelofibrosis, but with no increased leukemia unless other biological or genetic factors come into play, such as myelosuppressive agents or the acquisition of additional biologic or genetic defects. Depending on the biological background of individual patients, heterozygous and homozygous JAK2 V617F ET/PV may preferentially induce myeloid metaplasia with myelofibrosis with a relative suppression of megakaryocytic and erythropoietic myeloproliferation leading to clinical pictures of fibrotic chronic idiopathic myelofibrosis (CIMF) or agnogenic myeloid metaplasia. The main conclusion is that JAK2 V617F is a 100% specific clue to a new distinct clonal myeloproliferative disorder. JAK2 V617F-positive ET/PV and CIMF should be distinguished from wild-type JAK2 ET, rare cases of PV, and CIMF, and should be evaluated during life-long follow-up.

REFERENCES

  • 1 Vaquez M H. Sur une forme speciale de cyanose accompagnée d'hyperglobulie excessive et persitante.  Comptes Rendues des Seances de la Societé de Biologie. 1892;  44 384-388
  • 2 Osler W. Chronic cyanosis with polycythaemia and enlarged spleen. A new clinical entity.  Am J Med Sci. 1903;  126 187-201
  • 3 Moschowitz E. Biology of Disease. New York; Grune and Stratton 1948: 48-60
  • 4 Rosenthal M C. Extramedullary hematopoiesis: myeloid metaplasia.  Bull New Engl Med Cent. 1950;  12 154-160
  • 5 Dameshek W. Physiopathology and course of polycythemia vera as related to therapy.  JAMA. 1950;  18 790-797
  • 6 James C, Ugo V, Le Couedic P F et al.. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera.  Nature. 2005;  434 1144-1148
  • 7 James C, Ugo V, Casadevall N, Constantinescu S N, Vainchenker W A. JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects.  Trends Mol Med. 2005;  11 546-554
  • 8 Vainchenker W, Constantinescu S N. A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases.  Hematology (Am Soc Hematol Educ Program). 2005;  195-200
  • 9 Pearson T C, Messinezy M. The diagnosis criteria of polycythemia rubra vera.  Leuk Lymphoma. 1996;  22(suppl 1) 87-93
  • 10 Berlin N I. Diagnosis and classification of the polycythemias.  Semin Hematol. 1975;  12 339-351
  • 11 Murphy S, Peterson P, Iland H et al.. Experience of the polycythemia vera study group with essential thrombocythemia: a final report on diagnostic criteria, survival, and leukemic transition by treatment.  Semin Hematol. 1997;  34 29-39
  • 12 Baxter E J, Scott L M, Campbell P J et al.. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.  Lancet. 2005;  365 1054-1061
  • 13 Levine R L, Wadleigh M, Cools J et al.. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis.  Cancer Cell. 2005;  7 387-397
  • 14 Kralovics R, Passamonti F, Buser A S et al.. A gain-of-function mutation of JAK2 in myeloproliferative disorders.  N Engl J Med. 2005;  352 1779-1790
  • 15 Zhao R, Xing S, Li Z et al.. Identification of an acquired JAK2 mutation in polycythemia vera.  J Biol Chem. 2005;  280 22788-22792
  • 16 Staerk J, Kallin A, Demoulin J B, Vainchenker W, Constantinescu S N. JAK1 and TYK2 activation by homologous polycythemia vera JAK2 V617F mutation: cross talk with IGF1 receptor.  J Biol Chem. 2005;  280 41893-41899
  • 17 Kaushansky K. On the origin of the chronic myeloproliferative disorders: it makes all sense.  Blood. 2005;  105 4187-4190
  • 18 Goldman J M. A unifying mutation in chronic myeloproliferative disorders.  N Engl J Med. 2005;  352 1744-1745
  • 19 Cazzola M, Skoda R. Gain of function, loss of control. A molecular basis for chronic myeloproliferative disorders.  Haematologica. 2005;  90 871-874
  • 20 Lu X, Levine R, Wernig G, Pikman Y, Zarnegar S, Gilliland D G. Expression of a homodimeric type I cytokine receptor is required for JAK2 V617F-mediated transformation.  Proc Natl Acad Sci USA. 2005;  102 18962-18967
  • 21 Michiels J J, Berneman Z, Van Bockstaele D, van der Planken M, De Raeve H, Schroyens W. Clinical and laboratory features, pathobiology of platelet-mediated microvascular disturbances, major thrombosis and bleeding complications and the molecular etiology of essential thrombocythemia and polycythemia vera.  Semin Thromb Hemost. 2006;  32 174-207
  • 22 Ellis J T, Silver R T, Coleman M, Geller S A. The bone marrow in polycythemia vera.  Semin Hematol. 1975;  12 433-444
  • 23 Lengfelder E, Hochhaus A, Kronawitter U et al.. Should a platelet limit of 600 × 10/L be used as a diagnostic criterion in essential thrombocythaemia?.  Br J Haematol. 1998;  100 15-23
  • 24 Kiladjian J J, Elkassar N, Hetet G, Balitrand N et al.. Analysis of JAK2 mutation in essential thrombocythemia (ET) patients with monoclonal and polyclonal X-chromosome inactivation patterns (XCIPs).  Leukemia. 2006;  , In press
  • 25 Campbell P, Scott L M, Buck G et al.. Definition of essential thrombocythemia and relation of essential thrombocythemia to polycythaemia vera based on JAK2 V617F mutation status: a prospective study.  Lancet. 2005;  366 1945-1953
  • 26 Prchal J F, Axelrad A A. Bone-marrow responses in polycythemia vera.  N Engl J Med. 1974;  290 1382
  • 27 Weinberg R S. In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders.  Semin Hematol. 1997;  34 64-69
  • 28 Kralovics R, Prchal J T. Haematopoietic progenitors and signal transduction in polycythaemia vera and primary thrombocythaemia.  Baillieres Clin Haematol. 1998;  11 803-818
  • 29 Weinberg R S, Worsley A, Gilbert H S, Cuttner J, Berk P D, Alter B P. Comparison of erythroid progenitor cell growth in vitro in polycythemia vera and chronic myelogenous leukemia: only polycythemia vera has endogenous colonies.  Leuk Res. 1989;  13 331-338
  • 30 Kralovics R, Buser A S, Teo S S et al.. Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders.  Blood. 2003;  102 1869-1871
  • 31 Dobo I, Boiret N, Lippert E et al.. A standardized endogenous megakaryocytic erythroid colony assay for the diagnosis of essential thrombocythemia.  Haematologica. 2004;  89 1207-1212
  • 32 Correa P N, Eskenazi D, Axellrad A A. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like grown factor-1 in vitro: studies in an improved serum-free medium.  Blood. 1994;  83 99-112
  • 33 Dai C H, Krantz S B, Dessypris E N, Means Jr R T, Horn S T, Gilbert H S. Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor.  Blood. 1992;  80 891-899
  • 34 Ugo V, Marzac C, Teyssandier I et al.. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera.  Exp Hematol. 2004;  32 179-187
  • 35 Shih L Y, Lee C T. Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay.  Blood. 1994;  83 744-748
  • 36 Liu E, Jelinek J, Pastore Y D, Guan Y, Prchal J F, Prchal J T. Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV-1 expression and BFU-E response to erythropoietin.  Blood. 2003;  101 3294-3301
  • 37 Juvonen E, Ikkala E, Oksanen K, Ruutu T. Megakaryocyte and erythroid colony formation in essential thrombocythaemia and reactive thrombocytosis: diagnostic value and correlation to complications.  Br J Haematol. 1993;  83 192-197
  • 38 Spinelli O, Rota B, Finazzi G, Barbui T, Rambaldi A. Quantitative analysis of PRV-1 gene expression in chronic myeloproliferative disorders: positive correlation with polycythemia vera diagnosis and leukocyte alkaline phosphatase expression.  Blood. 2002;  100(suppl 1) 3145a
  • 39 Lippert E, Girodon F, Kralovics R et al.. Quantitative analysis of wild type and V617F JAK2 expression in neutrophils of Polycythemia Vera and Essential Thrombocythemia patients at diagnosis.  Blood. 2005;  106 78a-257 (abst)
  • 40 Battegay E J, Thomssen C, Nissen C, Gudat F, Speck B. Endogenous megakaryocyte colonies from peripheral blood in precursor cell cultures of patients with myeloproliferative disorders.  Eur J Haematol. 1989;  42 321-326
  • 41 Kimura H, Ishibashi T, Sato T, Matsuda S, Uchida T, Kariyone S. Megakaryocytic colony formation (CFU-Meg) in essential thrombocythemia: quantitative and qualitative abnormalities of bone marrow CFU-Meg.  Am J Hematol. 1987;  24 23-30
  • 42 Mazur E M, Cohen J L, Bogart L. Growth characteristics of circulating hematopoietic progenitor cells from patients with essential thrombocythemia.  Blood. 1988;  71 1544-1550
  • 43 Han Z C, Briere J, Nedellec G et al.. Characteristics of circulating megakaryocyte progenitors (CFU-MK) in patients with primary myelofibrosis.  Eur J Haematol. 1988;  40 130-135
  • 44 Michiels J J, Juvonen E. Proposal for revised diagnostic criteria of essential thrombocythemia and polycythemia vera by the Thrombocythemia Vera Study group.  Semin Thromb Hemost. 1997;  23 339-347
  • 45 Li Y, Hetet G, Maurer A M, Chait Y, Dhermy D, Briere J. Spontaneous megakaryocyte colony formation in myeloproliferative disorders is not neutralizable by antibodies against IL3, IL6 and GM-CSF.  Br J Haematol. 1994;  87 471-476
  • 46 Florensa L, Besses C, Almarcha J et al.. Circulating erythroid and megakaryocytic progenitors in polycythaemia vera and essential thrombocythaemia.  Eur J Haematol. 1989;  43 417-422
  • 47 Taksin A L, Couedic J P, Dusanter-Fourt I et al.. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L.  Blood. 1999;  93 125-139
  • 48 Kiladjian J J, Elkassar N, Hetet G, Briere J, Grandchamp B, Gardin C. Study of the thrombopoietin receptor in essential thrombocythemia.  Leukemia. 1997;  11 1821-1826
  • 49 Li Y, Hetet G, Kiladjian J J, Gardin C, Grandchamp B, Briere J. Proto-oncogene c-mpl is involved in spontaneous megakaryocytopoiesis in myeloproliferative disorders.  Br J Haematol. 1996;  92 60-66
  • 50 Han Z C, Bellucci S, Tenza D, Caen J P. Negative regulation of human megakaryocytopoiesis by human platelet factor 4 and beta thromboglobulin: comparative analysis in bone marrow cultures from normal individuals and patients with essential thrombocythaemia and immune thrombocytopenic purpura.  Br J Haematol. 1990;  74 395-401
  • 51 Han Z C, Sensebe L, Abgrall J F, Briere J. Platelet factor 4 inhibits human megakaryocytopoiesis in vitro.  Blood. 1990;  75 1234-1239
  • 52 Han Z C, Maurer A M, Bellucci S et al.. Inhibitory effect of platelet factor 4 (PF4) on the growth of human erythroleukemia cells: proposed mechanism of action of PF4.  J Lab Clin Med. 1992;  120 645-660
  • 53 Kobayashi S, Teramura M, Hoshino S, Motoji T, Oshimi K, Mizoguchi H. Circulating megakaryocyte progenitors in myeloproliferative disorders are hypersensitive to interleukin-3.  Br J Haematol. 1993;  83 539-544
  • 54 Axelrad A A, Eskinazi D, Correa P N, Amato D. Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHu MGDF) in essential thrombocythemia.  Blood. 2000;  96 3310-3321
  • 55 Li J, Yang C, Xia Y et al.. Thrombocytopenia caused by the development of antibodies to thrombopoietin.  Blood. 2001;  98 3241-3248
  • 56 Horikawa Y, Matsumura I, Hashimoto K et al.. Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia.  Blood. 1997;  90 4031-4038
  • 57 von dem Borne A E, Folman C, Linthorst G E et al.. Thrombopoietin: its role in platelet disorders and as a new drug in clinical medicine.  Baillieres Clin Haematol. 1998;  11 427-445
  • 58 Hirayama Y, Sakamaki S, Matsunaga T et al.. Concentrations of thrombopoietin in bone marrow in normal subjects and in patients with idiopathic thrombocytopenic purpura, aplastic anemia, and essential thrombocythemia correlate with its mRNA expression of bone marrow stromal cells.  Blood. 1998;  92 46-52
  • 59 Fielder P J, Gurney A L, Stefanich E et al.. Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets.  Blood. 1996;  87 2154-2161
  • 60 Gurney A L, Wong S C, Henzel W J, de Sauvage F J. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation.  Proc Natl Acad Sci USA. 1995;  92 5292-5296
  • 61 Bellucci S, Michiels J J. Spontaneous proliferative megakaryocytopoiesis and platelet hyperreactivity in essential thrombocythemia: is thrombopoietin the link?.  Ann Hematol. 2000;  79 51-58
  • 62 Preston F E, Martin J F, Stewart R M, Davies-Jones G A. Thrombocytosis, circulating platelet aggregates, and neurological dysfunction.  BMJ. 1979;  2 1561-1563
  • 63 Mehta P, Mehta J, Ross M, Ostrowski N, Player D. Decreased platelet aggregation but increased thromboxane A2 generation in polycythemia vera.  Arch Intern Med. 1985;  145 1225-1227
  • 64 Vreeken J, van Aken W G. Spontaneous aggregation of blood platelets as a cause of idiopathic thrombosis and recurrent painful toes and fingers.  Lancet. 1971;  2 1395-1397
  • 65 Wu K K. Platelet hyperaggregability and thrombosis in patients with thrombocythemia.  Ann Intern Med. 1978;  88 7-11
  • 66 Bellucci S, Janvier M, Tobelem G et al.. Essential thrombocythemias. Clinical evolutionary and biological data.  Cancer. 1986;  58 2440-2447
  • 67 van Genderen P J, Michiels J J, Zijlstra F J. Lipoxygenase deficiency in primary thrombocythemia is not a true deficiency.  Thromb Haemost. 1994;  71 803-804
  • 68 Bellucci S, Ignatova E, Jaillet N, Boffa M C. Platelet hyperactivation in patients with essential thrombocythemia is not associated with vascular endothelial cell damage as judged by the level of plasma thrombomodulin, protein S, PAI-1, t-PA and vWF.  Thromb Haemost. 1993;  70 736-742
  • 69 Boughton B J, Allington M J, King A. Platelet and plasma beta thromboglobulin in myeloproliferative syndromes and secondary thrombocytosis.  Br J Haematol. 1978;  40 125-132
  • 70 Grossi A, Vannucchi A M, Rafanelli D, Filimberti E, Rossi Ferrini P. Beta-thromboglobulin content in megakaryocytes of patients with myeloproliferative diseases.  Thromb Res. 1986;  43 367-374
  • 71 Najean Y, Poirier O, Lokiec F. The clinical significance of beta-thromboglobulin and platelet factor-4 in polycythaemic patients.  Scand J Haematol. 1983;  31 298-304
  • 72 van Genderen P J, Lucas I S, van Strik R et al.. Erythromelalgia in essential thrombocythemia is characterized by platelet activation and endothelial cell damage but not by thrombin generation.  Thromb Haemost. 1996;  76 333-338
  • 73 Griesshammer M, Beneke H, Nussbaumer B, Grunewald M, Bangerter M, Bergmann L. Increased platelet surface expression of P-selectin and thrombospondin as markers of platelet activation in essential thrombocythaemia.  Thromb Res. 1999;  96 191-196
  • 74 Thibert V, Bellucci S, Cristofari M, Gluckman E, Legrand C. Increased platelet CD36 constitutes a common marker in myeloproliferative disorders.  Br J Haematol. 1995;  91 618-624
  • 75 Jensen M K, de Nully Brown P, Lund B V, Nielsen O J, Hasselbalch H C. Increased platelet activation and abnormal membrane glycoprotein content and redistribution in myeloproliferative disorders.  Br J Haematol. 2000;  110 116-124
  • 76 Rocca B, Ciabattoni G, Tartaglione R et al.. Increased thromboxane biosynthesis in essential thrombocythemia.  Thromb Haemost. 1995;  74 1225-1230
  • 77 van Genderen P J, Prins F J, Michiels J J, Schror K. Thromboxane-dependent platelet activation in vivo precedes arterial thrombosis in thrombocythaemia: a rationale for the use of low-dose aspirin as an antithrombotic agent.  Br J Haematol. 1999;  104 438-441
  • 78 Landolfi R, Ciabattoni G, Patrignani P et al.. Increased thromboxane biosynthesis in patients with polycythemia vera: evidence for aspirin-suppressible platelet activation in vivo.  Blood. 1992;  80 1965-1971
  • 79 Van Genderen P JJ, Michiels J J, van Strik R, Lindemans J, van Vliet H HDM. Platelet consumption in thrombocythemia complicated by erythromelalgia: reversal by aspirin.  Thromb Haemost. 1995;  73 210-214
  • 80 Michiels J J. Erythromelalgia and thrombocythemia: a disease of platelet prostaglandin metabolism. Thesis 1981, Rotterdam.  Semin Thromb Hemost. 1997;  23 335-338
  • 81 Michiels J J, Abels J, Steketee J, van Vliet H HDM, Vuzevski V D. Erythromelalgia caused by platelet-mediated arteriolar inflammation and thrombosis in thrombocythemia.  Ann Intern Med. 1985;  102 466-471
  • 82 Michiels J J, Koudstaal P, Mulder A H, van Vliet H HDM. Transient neurologic and ocular manifestations in primary thombocythemia.  Neurology. 1993;  43 1107-1110
  • 83 Michiels J J, Van Genderen P JJ, Janssen P HP, Koudstaal P. Atypical transient ischemic attacks in thrombocythemia of various myeloproliferative disorders.  Leuk Lymphoma. 1996;  22(suppl 1) 65-70
  • 84 Michiels J J, Berneman Z, Schroyens W, Koudstaal P J, Lindemans J, van Vliet H HDM. Platelet-mediated thrombotic complications in patients with ET: reversal by aspirin, platelet reduction but not by coumadin.  Blood Cells Mol Dis. 2006;  36 199-205
  • 85 Michiels J J. Aspirin and platelet-lowering agents for the prevention of vascular complications in essential thrombocythemia.  Clin Appl Thromb Hemost. 1999;  5 247-251
  • 86 Chen J, Herceg-Harjacek L, Groopman J E, Grabarek J. Regulation of platelet activation in vitro by the c-Mpl ligand, thrombopoietin.  Blood. 1995;  86 4054-4062
  • 87 Usuki K, Iki S, Endo M et al.. Influence of thrombopoietin on platelet activation in myeloproliferative disorders.  Br J Haematol. 1997;  97 530-537
  • 88 Finazzi G, Budde U, Michiels J J. Bleeding time and platelet function in essential thrombocythemia and other myeloproliferative disorders.  Leuk Lymphoma. 1996;  22(suppl 1) 71-78
  • 89 Petrides P E, Siegel F. Thrombotic complications in essential thrombocythemia (ET): clinical facts and biochemical riddles.  Blood Cells Mol Dis. 2006;  , In press
  • 90 Cesar J M, de Miguel D, Garcia Avello A, Burgaleta C. Platelet dysfunction in primary thrombocythemia using the platelet function analyzer, PFA-100.  Am J Clin Pathol. 2005;  123 772-777
  • 91 Michiels J J. Acquired von Willebrand Disease due to increasing platelet count can readily explain the paradox of thrombosis and bleeding in thrombocythemia.  Clin Appl Thromb Hemost. 1999;  5 147-151
  • 92 van Genderen P JJ, Budde U, Michiels J J, van Strik R, van Vliet H HDM. The reduction of large von Willebrand factor multimers in plasma in essential thrombocythemia is related to the platelet count.  Br J Haematol. 1996;  93 962-965
  • 93 Van Genderen P JJ. Pathophysiological Aspects of Platelet-Mediated Thrombosis and Bleeding in Essential Thrombocythemia [thesis]. Rotterdam, The Netherlands; Erasmus University 1998
  • 94 Troost M M, van Genderen P JJ. Excessive prolongation of the Ivy bleeding time after aspirin in essential thrombocythemia is also demonstrable in vitro in the high shear stress system PFA-100.  Ann Hematol. 2002;  81 352-353
  • 95 Falanga A, Marchetti M, Evangelista V et al.. Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera.  Blood. 2000;  96 4261-4266
  • 96 Burgaleta C, Gonzalez N, Cesar J. Increased CD11/CD18 expression and altered metabolic activity on polymorphonuclear leukocytes from patients with polycythemia vera and essential thrombocythemia.  Acta Haematol. 2002;  108 23-28
  • 97 Maugeri N, Evangelista V, Celardo A et al.. Polymorphonuclear leukocyte-platelet interaction: role of P-selectin in thromboxane B2 and leukotriene C4 cooperative synthesis.  Thromb Haemost. 1994;  72 450-456
  • 98 Jensen M K, de Nully Brown P, Lund B V, Nielsen O J, Hasselbalch H C. Increased circulating platelet-leukocyte aggregates in myeloproliferative disorders is correlated to previous thrombosis, platelet activation and platelet count.  Eur J Haematol. 2001;  66 143-151
  • 99 Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera.  Exp Hematol. 2005;  33 523-530
  • 100 Evangelista V, Celardo A, Dell'Elba G et al.. Platelet contribution to leukotriene production in inflammation: in vivo evidence in the rabbit.  Thromb Haemost. 1999;  81 442-448
  • 101 Maugeri N, Evangelista V, Piccardoni P et al.. Transcellular metabolism of arachidonic acid: increased platelet thromboxane generation in the presence of activated polymorphonuclear leukocytes.  Blood. 1992;  80 447-451
  • 102 Chlopicki S, Lomnicka M, Gryglewski R J. Obligatory role of lipid mediators in platelet-neutrophil adhesion.  Thromb Res. 2003;  110 287-292
  • 103 Falanga A, Marchetti M, Barbui T, Smith C W. Pathogenesis of thrombosis in essential thrombocythemia and polycythemia vera: the role of neutrophils.  Semin Hematol. 2005;  42 239-247
  • 104 Falanga A, Marchetti M, Balducci D et al.. Distinct hemostatic profile of leucocytes in essential thrombocythemia (ET) carrying the JAK2 V617F mutation.  Blood. 2005;  106 114a (378 abst)
  • 105 Arellano-Rodrigo E, Alvarez-Larran A, Reverter J C, Villamor N, Colomer D, Cervantes F. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status.  Haematologica. 2006;  91 169-175
  • 106 Blann A, Caine G, Bareford D. Abnormal vascular, platelet and coagulation markers in primary thrombocythaemia are not reversed by treatments that reduce the platelet count.  Platelets. 2004;  15 447-449
  • 107 Karakantza M, Giannakoulas N C, Zikos P et al.. Markers of endothelial and in vivo platelet activation in patients with essential thrombocythemia vera.  Int J Hematol. 2004;  79 253-259
  • 108 Juvonen E, Ikkala E, Fyhrquist F, Ruutu T. Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin.  Blood. 1991;  78 3066-3069
  • 109 De La Chapelle A, Traskelin A L, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis.  Proc Natl Acad Sci USA. 1993;  90 4495-4499
  • 110 Barbui T, Finazzi G, de Gaetano  et al.. Polycythemia vera: the natural history of 1213 patients followed for 20 years.  Ann Intern Med. 1995;  123 656-664
  • 111 Fruchtman S M, Mack K, Kaplan M E, Peterson P, Berk P D, Wasserman L R. From efficacy to safety: a Polycythemia Vera Study Group report on hydroxyurea in patients with polycythemia vera.  Semin Hematol. 1997;  34 17-23
  • 112 Berk P, Wasserman L R, Fruchtman S M, Goldberg J D. Treatment of polycythemia vera: a summary of clinical trials conducted by the Polycythemia Vera study Group. In.: Wasserman LR, Berk PD, Berlin NI Polycythemia Vera and the Myeloproliferative Disorders. Philadelphia, PA; WB Saunders 1995
  • 113 Pearson T C, Wetherley-Mein G. Vascular occlusive episodes and venous hematocrit in primary proliferative polycythaemia.  Lancet. 1978;  2 1219-1222
  • 114 Thomas D J, Marshall J, Russell R WR et al.. Cerebral blood-flow in polycythemia.  Lancet. 1977;  2 161-163
  • 115 Thomas D J, du Boullat G H, Marshall J et al.. Effect of haematocrit on cerebral blood flow in man.  Lancet. 1977;  2 941-943
  • 116 Landolfi R, Marchioli R, Kutti J et al.. Efficacy and safety of low-dose aspirin in polycythemia vera: results of the ECLAP trial.  N Engl J Med. 2004;  350 114-124
  • 117 Michiels J J, Barbui T, Finazzi G et al.. Diagnosis and treatment of polycythemia vera and possible future study designs of the PVSG.  Leuk Lymphoma. 2000;  36 239-253
  • 118 van Genderen P J, Mulder P G, Waleboer M, van de Moesdijk D, Michiels J J. Prevention and treatment of thrombotic complications in essential thrombocythaemia: efficacy and safety of aspirin.  Br J Haematol. 1997;  97 179-184
  • 119 Besses C, Cervantes F, Pereira A et al.. Major vascular complications in essential thrombocythemia: a study of the predictive factors in a series of 148 patients.  Leukemia. 1999;  13 150-154
  • 120 Jantunen R, Juvonen E, Ikkala E, Oksanen K, Anttila P, Ruutu T. The predictive value of vascular risk factors and gender for the development of thrombotic complications in essential thrombocythemia.  Ann Hematol. 2001;  80 74-78
  • 121 Watson K V, Key N. Vascular complications of essential thrombocythaemia: a link to cardiovascular risk factors.  Br J Haematol. 1993;  83 198-203
  • 122 Amitrano L, Guardascione M A, Ames P R et al.. Thrombophilic genotypes, natural anticoagulants, and plasma homocysteine in myeloproliferative disorders: relationship with splanchnic vein thrombosis and arterial disease.  Am J Hematol. 2003;  72 75-81
  • 123 Ruggeri M, Gisslinger H, Tosetto A et al.. Factor V Leiden mutation carriership and venous thromboembolism in polycythemia vera and essential thrombocythemia.  Am J Hematol. 2002;  71 1-6
  • 124 Griesshammer M, Klippel S, Strunck E et al.. PRV-1 mRNA expression discriminates two types of essential thrombocythemia.  Ann Hematol. 2004;  83 364-370
  • 125 Johansson P, Ricksten A, Wennström L, Palmqvist L, Kutti J, Andreasson B. Increased risk for vascular complication in PRV-1 positive patients with essential thrombocythemia.  Br J Haematol. 2003;  123 513-516
  • 126 Goerttler P S, Steimle C, Marz E et al.. The Jak2V617F mutation, PRV-1 overexpression, and EEC formation define a similar cohort of MPD patients.  Blood. 2005;  106 2862-2864
  • 127 Wolanskyj A P, Lasho T L, Schwager S M et al.. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance.  Br J Haematol. 2005;  131 208-213
  • 128 Cheung B Y, Radia D H, Pantelidis P. The presence of the V617F mutation is associated with higher haemoglobin, older age and increased risk of thrombosis in essential thrombocythemia.  Blood. 2005;  106 985a-3531 (abst)
  • 129 Finazzi G, Guerini V, Rambaldi A, Barbui T. JAK2 Val 617 Phe mutation correlates with the risk of thrombosis in patients with essential thrombocythemia.  Blood. 2005;  106 725a-2580 (abst)
  • 130 Fiorini A, Reddiconto G, Farina G et al.. Clonality assay (X-CIP) and JAK2 V617F mutation: clustering patients with essential thrombocythemia at high risk for thrombosis.  Blood. 2005;  106 730a-2597 (abst)
  • 131 Bellucci S, Legrand C, Boval B, Drouet L, Caen J. Studies of platelet volume, chemistry and function in patients with essential thrombocythaemia treated with anagrelide.  Br J Haematol. 1999;  104 886-892
  • 132 Cortelazzo S, Finazzi G, Ruggeri M et al.. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis.  N Engl J Med. 1995;  332 1132-1136
  • 133 Fruchtman S M, Petitt R M, Gilbert H S, Fiddler G, Lyne A. Anagrelide Study Group . Anagrelide: analysis of long-term efficacy, safety and leukemogenic potential in myeloproliferative disorders.  Leuk Res. 2005;  29 481-491
  • 134 Maugeri N, Giordano G, Petrilli M P, de Gaetano G, et al.. Leucocyte activation in myeloproliferative disease. J Thromb Haemost. ISTH, Sydney. 2005: 1594 (abst)-0
  • 135 Harrison C N, Campbell P J, Buck G et al.. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia.  N Engl J Med. 2005;  353 33-45
  • 136 Patrono C, Coller B, FitzGerald G A, Hirsh J, Roth G. Platelet-active drugs: the relationships among dose, effectiveness, and side effects: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.  Chest. 2004;  126 234S-264S

Sylvia BellucciM.D. Ph.D. 

Service d'Hematologie Biologique, Hôpital Lariboisière

2 rue Ambroise Paré, 75010 Paris, France

Email: sylvia.bellucci@lrb.ap-hop-paris.fr

    >