Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2006(14): 2347-2348
DOI: 10.1055/s-2006-949618
DOI: 10.1055/s-2006-949618
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New YorkIodic Acid (HIO3)
Further Information
Publication History
Publication Date:
24 August 2006 (online)
PDF Download(opens in new window) Permissions and Reprints(opens in new window) All articles of this category(opens in new window)
Biographical Sketches
Introduction
Iodic acid (HIO3) has attracted much interest owing to its potential as oxidant, [1-8] reagent [9-12] and acidic source. [13] [14] The use of iodic acid has been known for a long time and has been widely employed in numerous and different organic reactions such as: oxidation of sulfides, [1] [3] iodination, [10] [12] deprotection, [13] nitrosation, [14] and dehydrogenation of aldehydes and ketones. [15] This reagent has several advantages: cost-effectiveness, non-toxicity, easy and clean workup of products.
Abstracts
(A) Patil et al. reported a useful method for the iodination of hydroxy aryl ketones; they showed a variety of ortho-hydroxy-substituted aromatic carbonyl compounds which were selectively iodinated in 81-87% yield by using iodine and iodic acid. [10] |
|
(B) Zolfigol and co-workers have used HIO3 and NaNO2 in the presence of wet SiO2 as a nitrosating agent for the effective and selective nitrosation of secondary amines under mild and heterogeneous conditions in good yields. [14] |
|
(C) Shirini et al. reported a simple and efficient method for the oxidation of thiols to disulfides and sulfides to sulfoxides in 87-95% yield using aqueous HIO3 at room temperature. [3] Also Lakouraj and co-workers have explained the utility of HIO3 for oxidation of sulfides to sulfoxides in the presence of wet SiO2 under solvent-free conditions. [1] |
|
(D) Ketoximes and aromatic aldoximes are converted to the corresponding carbonyl compounds with HIO3 under mild and heterogeneous conditions in CH2Cl2 at room temperature in 67-97% yields. [4] Also deoximation and dehydrazonation have been reported using HIO3 in the presence of wet SiO2 under solvent-free conditions. [16] |
|
(E) A variety of aldehydes and ketones were readily and selectively transformed to 1,3-saturated aldehydes and ketones with HIO3 and I2O5 at 45-65 °C in good yields. [15] |
|
(F) Hashemi and Akhbari showed the conversion of a variety of aromatic amines into their corresponding quinines under microwave irradiation. [8] |
|
(G) A variety of thioacetals and thioketals were deprotected to the corresponding carbonyl compounds with HIO3 in the presence of wet SiO2 at room temperature under solvent-free conditions. [13] |
|
- 1
Lakouraj MM.Tajbakhsh M.Shirini F.Asady Tamami MV. Synth. Commun. 2005, 35: 775 - 2
Fabian W. Z. Kristallogr. 1985, 170: 43 - 3
Shirini F.Zolfigol MA.Lakouraj MM.Azadbar MR. Russ. J. Org. Chem. (Engl. Transl.) 2001, 37: 1340 - 4
Chondrasekhar S.Gopalaiah K. Tetrahedron Lett. 2002, 43: 4023 - 5
Hashemi MM.Akhbari M. Russ. J. Org. Chem. (Engl. Transl.) 2005, 631: 1574 - 6
Hashemi MM.Rahimi A.Karimi-Jaberi Z. Acta Chim. Slov. 2005, 52: 86 - 7
Hashemi MM.Rahimi A.Ahmadibeni Y. Acta Chim. Slov. 2004, 51: 333 - 8
Hashemi MM.Akhbari M. Monatsh. Chem. 2003, 1561 - 9
Lio W.Zhou J.Wong J. Anal. Biochem. 1982, 120: 204 - 10
Patil BR.Bhusare SR.Pawar RP.Vibhute YB. Tetrahedron Lett. 2005, 46: 7179 - 11
Dawane BS.Vibhute YB. J. Indian Chem. Soc. 2000, 77: 299 - 12
Krassowska-Swiebocka B.Prokopienko G.Skulski L. Molecules 2005, 10: 394 - 13
Lakouraj MM.Tajbakhsh M.Shrini F.Asady Tamami M MV. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180: 2423 - 14
Zolfigol MA.Ghorbani Choghamarani A.Shirini F.Keypour H.Salehzadeh S. Synth. Commun. 2001, 31: 359 - 15
Nicolaou KC.Montagnon T.Baran PS. Angew. Chem. Int. Ed. 2002, 41: 1386 - 16
Shirini F.Zolfigol MA.Azadbar MR. Synth. Commun. 2002, 32: 315
References
- 1
Lakouraj MM.Tajbakhsh M.Shirini F.Asady Tamami MV. Synth. Commun. 2005, 35: 775 - 2
Fabian W. Z. Kristallogr. 1985, 170: 43 - 3
Shirini F.Zolfigol MA.Lakouraj MM.Azadbar MR. Russ. J. Org. Chem. (Engl. Transl.) 2001, 37: 1340 - 4
Chondrasekhar S.Gopalaiah K. Tetrahedron Lett. 2002, 43: 4023 - 5
Hashemi MM.Akhbari M. Russ. J. Org. Chem. (Engl. Transl.) 2005, 631: 1574 - 6
Hashemi MM.Rahimi A.Karimi-Jaberi Z. Acta Chim. Slov. 2005, 52: 86 - 7
Hashemi MM.Rahimi A.Ahmadibeni Y. Acta Chim. Slov. 2004, 51: 333 - 8
Hashemi MM.Akhbari M. Monatsh. Chem. 2003, 1561 - 9
Lio W.Zhou J.Wong J. Anal. Biochem. 1982, 120: 204 - 10
Patil BR.Bhusare SR.Pawar RP.Vibhute YB. Tetrahedron Lett. 2005, 46: 7179 - 11
Dawane BS.Vibhute YB. J. Indian Chem. Soc. 2000, 77: 299 - 12
Krassowska-Swiebocka B.Prokopienko G.Skulski L. Molecules 2005, 10: 394 - 13
Lakouraj MM.Tajbakhsh M.Shrini F.Asady Tamami M MV. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180: 2423 - 14
Zolfigol MA.Ghorbani Choghamarani A.Shirini F.Keypour H.Salehzadeh S. Synth. Commun. 2001, 31: 359 - 15
Nicolaou KC.Montagnon T.Baran PS. Angew. Chem. Int. Ed. 2002, 41: 1386 - 16
Shirini F.Zolfigol MA.Azadbar MR. Synth. Commun. 2002, 32: 315