References and Notes
<A NAME="RU05406ST-1A">1a</A>
Pfleiderer W.
Angew. Chem., Int. Ed. Engl.
1964,
3:
114
<A NAME="RU05406ST-1B">1b</A>
Rembold H.
Gyure WL.
Angew. Chem., Int. Ed. Engl.
1972,
11:
1061
<A NAME="RU05406ST-1C">1c</A>
Hama T.
Obika M.
Nature (London)
1960,
187:
326
<A NAME="RU05406ST-1D">1d</A>
Forrest HS.
Van Baalen C.
Ann. Rev. Microbiol.
1970,
24:
91
<A NAME="RU05406ST-1E">1e</A>
Ziegler I.
Harmsen R.
Adv. Insect. Physiol.
1969,
6:
139
<A NAME="RU05406ST-2A">2a</A>
Patterson EL.
Broquist HP.
Albrecht AM.
von Saltza MH.
Stokstad ELR.
J. Am. Chem. Soc.
1955,
77:
3167
<A NAME="RU05406ST-2B">2b</A>
Patterson EL.
von Saltza MH.
Stokstad ELR.
J. Am. Chem. Soc.
1956,
78:
5871
<A NAME="RU05406ST-3A">3a</A>
Kaufman S.
Fisher DB. In Molecular Mechanisms of Oxygen Activation
Hayaishi O.
Academic Press;
New York:
1974.
p.285-369
<A NAME="RU05406ST-3B">3b</A>
Kaufman S.
Kaufman EE. In Folates and Pterins
Vol. 2:
Blakley R.
Benkovic SJ.
J. Wiley and Sons;
New York:
1985.
p.251-352
<A NAME="RU05406ST-4">4</A>
Forrest HS.
Van Baalen C.
Myers J.
Arch. Biochem. Biophys.
1958,
78:
95
<A NAME="RU05406ST-5">5</A>
Choi YK.
Hwang YK.
Kang YH.
Park YS.
Pteridines
2001,
12:
121
<A NAME="RU05406ST-6">6</A>
Noguchi Y.
Ishii A.
Matsushima A.
Haishi D.
Yasumuro K.
Moriguchi T.
Wada T.
Kodera Y.
Hiroto M.
Nishihara H.
Sekine M.
Inada Y.
Mar. Biotechnol.
1999,
1:
207
<A NAME="RU05406ST-7">7</A>
Cha KW.
Pfleiderer W.
Yim JJ.
Helv. Chim. Acta
1995,
78:
600
<A NAME="RU05406ST-8A">8a</A>
Lin X.
White RH.
J. Bacteriol.
1988,
170:
1396
<A NAME="RU05406ST-8B">8b</A>
Cho S.-H.
Na J.-U.
Youn H.
Hwang C.-S.
Lee C.-H.
Kang S.-O.
Biochim. Biophys. Acta
1998,
1379:
53
<A NAME="RU05406ST-8C">8c</A>
Lee HW.
Oh CH.
Geyer A.
Pfleiderer W.
Park YS.
Biochim. Biophys. Acta
1999,
1410:
61
<A NAME="RU05406ST-9">9</A>
Ikawa M.
Sasner JJ.
Haney JF.
Foxall TL.
Phytochemistry
1995,
38:
1229
<A NAME="RU05406ST-10">10</A>
Hanaya T.
Soranaka K.
Harada K.
Yamaguchi H.
Suzuki R.
Endo Y.
Yamamoto H.
Pfleiderer W.
Heterocycles
2006,
67:
299
<A NAME="RU05406ST-11">11</A>
Ness RK.
Fletcher HG.
Hudson CS.
J. Am. Chem. Soc.
1950,
72:
2200
<A NAME="RU05406ST-12A">12a</A>
Patterson EL.
Milstrey R.
Stockstad ELR.
J. Am. Chem. Soc.
1956,
78:
5868
<A NAME="RU05406ST-12B">12b</A>
Viscontini M.
Provenzale R.
Frei WF.
Helv. Chim. Acta
1972,
55:
570
<A NAME="RU05406ST-12C">12c</A>
Taylor EC.
Jacobi PA.
J. Am. Chem. Soc.
1976,
98:
2301
<A NAME="RU05406ST-12D">12d</A>
Kappel M.
Mengel R.
Pfleiderer W.
Liebigs Ann. Chem.
1984,
1815
<A NAME="RU05406ST-12E">12e</A>
Mori K.
Kikuchi H.
Liebigs Ann. Chem.
1989,
963
<A NAME="RU05406ST-12F">12f</A>
Murata S.
Sugimoto T.
Ogiwara S.
Mogi K.
Wasada H.
Synthesis
1992,
303
<A NAME="RU05406ST-13A">13a</A>
Hanaya T.
Torigoe K.
Soranaka K.
Yamamoto H.
Yao Q.
Pfleiderer W.
Pteridines
1995,
6:
1
<A NAME="RU05406ST-13B">13b</A>
Yao Q.
Pfleiderer W.
Helv. Chim. Acta
2003,
86:
1
<A NAME="RU05406ST-14A">14a</A>
Oikawa Y.
Yoshioka T.
Yonemitsu O.
Tetrahedron Lett.
1982,
23:
885
<A NAME="RU05406ST-14B">14b</A>
Oikawa Y.
Tanaka T.
Horita K.
Yonemitsu O.
Tetrahedron Lett.
1984,
25:
5397
<A NAME="RU05406ST-14C">14c</A>
Tanaka T.
Oikaya Y.
Hamada T.
Yonemitsu O.
Tetrahedron Lett.
1986,
27:
3651
<A NAME="RU05406ST-15">15</A> Addition of 2,2-dimethoxypropane gave a higher yield of 6 (80%) than that of reported method by use of only acetone (68%):
Gigg R.
Payne S.
Conant R.
J. Carbohydr. Res.
1983,
2:
207
<A NAME="RU05406ST-16">16</A>
When acidic hydrolysis of methyl 2,3-O-isopropylidene-4-O-PMB-α-l-rhamnopyranoside was attempted to obtain 4-O-PMB-l-rhamnose(8), removal of the PMB group preferentially took place rather than hydrolysis of methyl
glycoside. Therefore we employed 1-propenyl glycoside, which is cleavable under weaker
acidic conditions.
<A NAME="RU05406ST-17">17</A>
Hough L.
Taylor TJ.
J. Chem. Soc.
1955,
3544
<A NAME="RU05406ST-18">18</A>
Weinstock J. inventors; US 3505329.
; Chem. Abstr. 1970, 72, 132787h
<A NAME="RU05406ST-19">19</A>
A similar condensation of non-protected 5-deoxy-l-erythro-pentos-2-ulose with the same pyrimidine derivative has been reported to provide an
8:2 mixture of 6- and 7-substituted pterins in a relatively low yield (37%; ref. 18).
<A NAME="RU05406ST-20">20</A>
Selected NMR data for 14a: 1H (600 MHz, CDCl3): δ = 1.23 (3 H, d, J
2
′,3
′ = 6.6 Hz, H-3′), 4.77 (1 H, d, J
1
′,2
′ = 4.4 Hz, H-1′), 5.36 (1 H, qd, H-2′), 8.96 (1 H, s, H-7). 13C (151 MHz, CDCl3): δ = 15.92 (C-3′), 71.76 (C-2′), 82.21 (C-1′), 128.36 (C-4a), 149.88 (C-7), 150.71
(C-6), 153.63 (C-8a), 157.55 (C-2), 161.83 (C-4).
Selected NMR data for 14b: 1H (600 MHz, CDCl3): δ = 1.22 (3 H, d, J
2
′,3
′ = 6.6 Hz, H-3′), 4.66 (1 H, d, J
1
′,2
′ = 4.2 Hz, H-1′), 5.37 (1 H, qd, H-2′), 8.78 (1 H, s, H-6). 13C (151 MHz, CDCl3): δ = 15.61 (C-3′), 71.94 (C-2′), 82.26 (C-1′), 129.29 (C-4a), 159.98 (C-7), 140.92
(C-6), 153.17 (C-8a), 157.88 (C-2), 161.83 (C-4).
<A NAME="RU05406ST-21A">21a</A>
Tobias S.
Günther H.
Pfleiderer W.
Chem. Ber.
1985,
118:
354
<A NAME="RU05406ST-21B">21b</A>
Geerts JP.
Nagel A.
Van der Plas HC.
Org. Magn. Reson.
1976,
8:
606
<A NAME="RU05406ST-22">22</A>
Use of SnCl4 as an activator resulted in the formation of diol 4 by cleavage of PMB group instead of glycosylation.
<A NAME="RU05406ST-23">23</A>
Farkas J.
Ledvina M.
Brokes J.
Jezek J.
Zajicek J.
Zaoral M.
Carbohydr. Res.
1987,
163:
63
<A NAME="RU05406ST-24">24</A>
General Procedure for Glycosylation of 15.
To a solution of 15 (56 mg, 0.10 mmol), glycosyl bromide (0.30 mmol) and TMU (0.012 mL, 0.10 mmol) in
dry CH2Cl2 (1.0 mL) was added silver triflate (56 mg, 0.22 mmol). The mixture was stirred at
r.t. for 3 h, diluted with CHCl3, and filtered through Celite®. The filtrate was washed with aq NaHCO3, dried (MgSO4), and evaporated in vacuo. The residue was purified by column chromatography to give
the 2′-O-glucopyranosyl-l-biopterin derivative.