References and Notes
<A NAME="RD19106ST-1A">1a</A>
Gewald K.
Z. Chem.
1962,
2:
305
<A NAME="RD19106ST-1B">1b</A>
Gewald K.
Schinke E.
Böttcher H.
Chem. Ber.
1966,
99:
94
<A NAME="RD19106ST-1C">1c</A>
Sabnis RW.
Rangnekar DW.
Sonawane ND.
J. Heterocycl. Chem.
1999,
36:
333 ; and references therein
<A NAME="RD19106ST-2">2</A>
Hagen H,
Nilz G,
Walter H, and
Landes A. inventors; German Patent 4039734.
; Chem. Abstr. 1992, 117, 106370
<A NAME="RD19106ST-3">3</A>
Press JB.
Pelkey ET. In Progress in Heterocyclic Chemistry
Vol. 9:
Gribble GW.
Gilchrist TW.
Pergamon;
New York:
1997.
p.77
<A NAME="RD19106ST-4">4</A>
Koike K.
Jia Z.
Nikaido T.
Liu Y.
Zhao Y.
Guo D.
Org. Lett.
1999,
1:
197
<A NAME="RD19106ST-5A">5a</A>
Duval E.
Case A.
Stein RL.
Cuny GD.
Bioorg. Med. Chem. Lett.
2005,
15:
1885
<A NAME="RD19106ST-5B">5b</A>
Andersen HS.
Olsen OH.
Iversen LF.
Sørensen ALP.
Mortensen SB.
Christensen MS.
Branner S.
Hansen TK.
Lau JF.
Jeppesen L.
Moran EJ.
Su J.
Bakir F.
Judge L.
Shahbaz M.
Collins T.
Vo T.
Newman MJ.
Ripka WC.
Møller NP.
J. Med. Chem.
2002,
45:
4443
<A NAME="RD19106ST-5C">5c</A>
Fujita M.
Hirayama T.
Ikeda N.
Med. Chem. Lett.
2002,
10:
3113
<A NAME="RD19106ST-5D">5d</A>
Webb TR.
Melman N.
Lvovskiy D.
Ji X.-d.
Jacobson KA.
Bioorg. Med. Chem. Lett.
2000,
10:
31
<A NAME="RD19106ST-5E">5e</A>
Pinto IL.
Jarvest RL.
Serafinowska HT.
Tetrahedron Lett.
2000,
41:
1597
<A NAME="RD19106ST-5F">5f</A>
Gütschow M.
Kuerschner L.
Neumann U.
Pietsch M.
Löser R.
Koglin N.
Eger K.
J. Med. Chem.
1999,
42:
5437
<A NAME="RD19106ST-6">6</A>
Castanedo GM.
Sutherlin DP.
Tetrahedron Lett.
2001,
42:
7181
<A NAME="RD19106ST-7A">7a</A>
Puterova Z.
Vegh D.
Gottasova R.
Vegh Z.
ARKIVOC
2005,
(xii):
36
<A NAME="RD19106ST-7B">7b</A>
McKibben B.
Cartwright CH.
Castelhano AL.
Tetrahedron Lett.
1999,
40:
5471
<A NAME="RD19106ST-8">8</A> Microwave irradiation was reported to be an efficient tool for the one-pot microscale
synthesis of N-acylated thiophenes 2 from acetophenones (ref. 5a). However, earlier attempts to use the microwave technique
showed that acetophenone was unreactive in the one-pot Gewald reaction:
Hoener APF.
Henkel B.
Gauvin J.-C.
Synlett
2003,
63
<A NAME="RD19106ST-9">9</A>
Cope AA.
Hofmann CH.
Wyckoff C.
Hardenbergh E.
J. Am. Chem. Soc.
1941,
63:
3452
<A NAME="RD19106ST-10">10</A> Similar yields of 9-43% were reported for a series of 4-aryl-substituted thiophenes
2 resulted from the two-step Gewald reaction:
Shvedov VI.
Ryzhkova VK.
Grinev AN.
Khim. Geterotsikl. Soedin.
1967,
3:
239 ; Chem. Abstr. 1967, 67, 73464
<A NAME="RD19106ST-11A">11a</A>
Le Moal H.
Carrié R.
Foucaud A.
Bargain M.
Sévellec C.
Bull. Soc. Chim. Fr.
1966,
1033
<A NAME="RD19106ST-11B">11b</A>
Prager RH.
Were ST.
Aust. J. Chem.
1983,
36:
1441
<A NAME="RD19106ST-12">12</A> Ionic liquids were shown to be very efficient in the case of the Gewald synthesis
with aliphatic and alicyclic ketones:
Hu Y.
Chen Z.-C.
Le Z.-G.
Zheng Q.-G.
Synth. Commun.
2004,
34:
3801
<A NAME="RD19106ST-13">13</A>
To dissolve crystalline ammonium salts a small amount of 95% ethanol was added (0.5
mL per 1 mmol of acetophenone). DMF was also shown to be a good choice.
<A NAME="RD19106ST-14">14</A>
Replacement of morpholine with alternative amines or acetic acid with TFA caused a
substantial drop in the conversion of acetophenone. Thus, changing the amine from
morpholine to diethylamine produced a heavily contaminated reaction mixture with only
18% conversion. At the same time employing half the amount of morpholine (1.5 equiv)
and acetic acid (0.5 equiv) with acetophenone cyanoacetate (1 equiv) and sulfur (1
equiv) resulted in only a small decrease in ketone conversion (57%).
<A NAME="RD19106ST-15">15</A>
Peet NP.
Sunder S.
Barbuch RJ.
J. Heterocycl. Chem.
1986,
23:
129
<A NAME="RD19106ST-16">16</A> Resonances of methyl groups adjacent to double bonds in authentic (E)- and (Z)-nitriles 3a:
Zhu X.-Q.
Liu Y.-C.
Li J.
Wang H.-Y.
J. Chem. Soc., Perkin Trans. 2
1997,
2191
<A NAME="RD19106ST-17">17</A>
We were also interested in investigating if the combination of organic base and acid
were essential for the formation of 3a and if we could reach a similar equilibrium in the absence of acetic acid, that is,
under conditions generally used in classical one-pot Gewald reaction (see ref. 1).
In contrast to the former experiment, even heating for 12 hours was insufficient for
the mixture of acetophenone, ethyl cyano-acetate, and morpholine (1:1:3) to give any
condensation products at detectable concentrations. The same result was obtained for
the reaction of acetophenone, ethyl cyano-acetate, and acetic acid in the absence
of morpholine. Kinetic measurements and further experiments made it possible to consider
that the acid-base ‘catalyst’, morpholinium acetate, was required in high concentrations
to enhance the rate of the process leading to nitriles 3a, which in turn was a key intermediate for the latter steps of thiolation and ring
closure.
<A NAME="RD19106ST-18">18</A>
Heterocyclization; Typical Conditions: A 25-mL round-bottomed two-necked flask equipped with a magnetic stirring bar and
argon inlet tube was charged with acetophenone (2.40 g, 20.0 mmol), ethyl cyanoacetate
(3.39 g, 30.0 mmol), 95% EtOH (5 mL), morpholine (2.61 g, 30.0 mmol), and glacial
AcOH (0.60 g, 10 mmol). The mixture was stirred at 55 °C (temperature of bath) for
3 h. Finely powdered sulfur (3 × 0.32 g, 10 mmol) was then added in equal portions.
After addition of each new portion the mixture was flushed with argon and left stirring
at 55 °C for 10-12 h (overall reaction time 36-40 h). The mixture was transferred
to a separating funnel containing CH2Cl2 (30 mL) and H2O (30 mL). The organic layer was separated, washed with brine (4 × 10 mL), filtered
through a short plug of silica, and concentrated in vacuo to give 4.62 g of the crude
product. 1H NMR spectroscopy indicated 92% conversion of acetophenone to 2a.Purification; Method A: Column chromatography (silica gel; CHCl3) gave 2a (3.38 g, 68%); off-white plates; mp 98-99 °C (hexane, Lit.
[1b]
mp 98 °C).Method B: The crude product was dissolved in EtOAc (10 mL), and a solution of anhyd HCl (2.2
M) in anhyd EtOAc (15 mL, 33 mmol of HCl) was added to furnish a resinous cake. The
cake was thoroughly triturated until crystallization began. The mixture was allowed
to stand in a refrigerator overnight. The crystalline hydrochloride was collected
by filtration, then washed with EtOAc (3 × 3 mL), and dried in air to give 3.92 g
of crude hydrochloride. The residue was suspended in 5% aq NH3 (10 mL) in CH2Cl2 (20 mL). The organic layer was separated, filtered through a short plug of silica,
and concentrated in vacuo to give 2a (3.14 g, 64%.1H NMR (400 MHz, CDCl3): δ = 0.92 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 4.02 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 5.58 (br s, 2 H, NH2), 6.04 (s, 1 H, thiophene-CH), 7.28 (app s, 5 H, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.61 (q), 59.38 (t), 105.47 (d), 106.31 (s), 126.74 (d), 127.18 (d), 128.91
(d), 138.46 (s), 141.68 (s), 163.70 (s), 165.66 (s). HRMS: m/z calcd for C13H13NO2S [M+]: 247.0667; found: 247.0678.Thiophenes 2b-n were prepared analogously.Compound 2b: Purified by method A (CH2Cl2); yield: 56%; white powder; mp 105-107 °C (EtOH). 1H NMR (400 MHz, CDCl3): δ = 0.97 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 4.04 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 5.94 (br s, 2 H, NH2), 6.04 (s, 1 H, thiophene-CH), 7.21 (d, AB system, 2 H, J = 8.8 Hz, ArH), 7.25 (d, AB system, 2 H, J = 8.8 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.63 (q), 59.40 (t), 105.64 (d), 105.76 (s), 127.23 (d), 130.14 (d), 132.59
(s), 136.82 (s), 140.21 (s), 163.86 (s), 165.34 (s). HRMS: m/z calcd for C13H12NO2SCl [M+]: 281.0277; found: 281.0281.Compound 2c: Purified by method B; yield: 52%; white powder; mp 120-121 °C (hexane). 1H NMR (400 MHz, CDCl3): δ = 0.96 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 4.04 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 5.88 (br s, 2 H, NH2), 6.02 (s, 1 H, thiophene-CH), 7.14 (d, 2 H, J = 8.4 Hz, ArH), 7.41 (d, 2 H, J = 8.4 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.67 (q), 59.44 (t), 105.65 (d), 105.73 (s), 120.72 (s), 130.21 (d), 130.51
(d), 137.31 (s), 140.23 (s), 163.89 (s), 165.35 (s). HRMS: m/z calcd for C13H12NO2SBr [M+]: 324.9773; found: 324.9791.Compound 2d: Purified by method B; yield: 70%; white powder; mp 105-106.5 °C (toluene). 1H NMR (400 MHz, CDCl3): δ = 0.91 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 4.03 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 6.08 (br s, 2 H, NH2), 6.11 (s, 1 H, thiophene-CH), 7.45 (dd, 1 H, J = 8.4, 8.4 Hz, ArH), 7.62 (ddd, 1 H, J = 8.4, 1.2, 1.2 Hz, ArH), 8.12 (ddd, 1 H, J = 8.4, 1.2, 1.2 Hz, ArH), 8.16 (dd, 1 H, J = 1.2, 1.2 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.56 (q), 59.51 (t), 105.14 (s), 106.67 (d), 121.57 (d), 123.96 (d), 127.92
(d), 134.96 (d), 138.77 (s), 139.87 (s), 147.35 (s), 164.36 (s), 165.04 (s). HRMS:
m/z calcd for C13H12N2O4S [M+]: 292.0518; found: 292.0519.Compound 2e: Purified by method A (CHCl3); yield: 52%; white powder; mp 126-127 °C (EtOH). 1H NMR (400 MHz, CDCl3): δ = 0.94 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 4.03 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 6.04 (br s, 2 H, NH2), 6.06 (s, 1 H, thiophene-CH), 7.39 (ddd, 1 H, J = 8.4, 8.4, 0.6 Hz, ArH), 7.51 (ddd, 1 H, J = 8.4, 1.2, 1.2 Hz, ArH), 7.56 (ddd, 1 H, J = 8.4, 1.2, 1.2 Hz, ArH), 7.59 (ddd, 1 H, J = 1.2, 1.2, 0.6 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.59 (q), 59.46 (t), 105.27 (s), 106.42 (d), 111.29 (s), 118.74 (s), 127.93
(d), 130.18 (d), 132.54 (d), 133.31 (d), 138.96 (s), 139.59 (s), 164.28 (s), 165.04
(s). HRMS: m/z calcd for C14H12N2O2S [M+]: 272.0619; found: 272.0621.Compound 2f: Purified by method A (CH2Cl2-hexane, 1:2); yield: 64%; white powder; mp 102-103 °C (hexane). 1H NMR (400 MHz, CDCl3): δ = 0.89 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 1.37 (t, 3 H, J = 7.1 Hz, CH
3CH2O), 4.01 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 4.36 (q, 2 H, J = 7.1 Hz, CH3CH
2O), 5.95 (br s, 2 H, NH2), 6.07 (s, 1 H, thiophene-CH), 7.36 (dd, 1 H, J = 7.6, 7.6 Hz, ArH), 7.47 (ddd, 1 H, J = 7.6, 1.0, 1.0 Hz, ArH), 7.97 (ddd, 1 H, J = 7.6, 1.0, 1.0 Hz, ArH), 7.98 (dd, 1 H, J = 1.0, 1.0 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.53 (q), 14.20 (q), 59.36 (t), 60.75 (t), 104.67 (s), 105.89 (d), 127.12
(d), 127.89 (d), 129.57 (s), 130.06 (d), 133.26 (d), 138.58 (s), 140.47 (s), 163.99
(s), 165.45 (s), 166.45 (s). HRMS: m/z calcd for C16H17NO4S [M+]: 319.0878; found: 319.0869.Compound 2g: Prepared using EtOH-DMF (1:1) as the solvent and purified by method B; yield: 37%;
white powder; mp 127-128 °C (EtOH). 1H NMR (400 MHz, CDCl3): δ = 0.99 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 4.06 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 5.65 (br s, 1 H, OH), 5.99 (s, 1 H, thiophene-CH), 6.06 (br s, 2 H, NH2), 6.75 (d, 2 H, J = 8.4 Hz, ArH), 7.14 (d, 2 H, J = 8.4 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.72 (q), 59.58 (t), 105.11 (d), 105.94 (s), 114.11 (d), 130.08 (d), 130.80
(s), 141.16 (s), 154.72 (s), 163.82 (s), 165.84 (s). HRMS: m/z calcd for C13H13NO3S [M+]: 263.0616; found: 263.0624.Compound 2h: Purified by method A (CHCl3); yield: 45%; white powder; mp 115-116 °C (hexane). 1H NMR (400 MHz, CDCl3): δ = 0.95 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 4.03 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 5.80 (br s, 3 H, NH2, OH), 6.04 (s, 1 H, thiophene-CH), 6.74 (dd, 1 H, J = 1.0, 1.0 Hz, ArH), 6.75 (ddd, 1H, J = 8.5, 1.0, 1.0 Hz, ArH), 6.84 (ddd, 1 H, J = 8.5, 1.0, 1.0 Hz, ArH), 7.15 (dd, 1 H, J = 8.5, 8.5 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.56 (q), 59.49 (t), 105.56 (d), 106.32 (s), 113.69 (d), 115.95 (d), 121.48
(d), 128.32 (d), 139.83 (s), 141.01 (s), 154.61 (s), 163.70 (s), 165.74 (s). HRMS:
m/z calcd for C13H13NO3S [M+]: 263.0616; found: 263.0626.Compound 2i: Purified by method B; yield: 45%; white powder; mp 73-75 °C (toluene-hexane, 1:1).
1H NMR (400 MHz, CDCl3): δ = 0.98 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 3.81 (s, 3 H, OCH3), 4.05 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 5.99 (s, 1 H, thiophene-CH), 6.04 (br s, 2 H, NH2), 6.84 (d, 2 H, J = 8.8 Hz, ArH), 7.21 (d, 2 H, J = 8.8 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.72 (q), 55.14 (q), 59.29 (t), 104.92 (d), 105.40 (s), 112.57 (d), 129.89
(d), 130.90 (s), 141.12 (s), 158.56 (s), 163.72 (s), 165.61 (s). HRMS: m/z calcd for C14H15NO3S [M+] : 277.0773; found: 277.0778.Compound 2j: Purified by method B; yield: 20%; white powder; mp 123-124 °C (MeOH). 1H NMR (400 MHz, CDCl3): δ = 1.00 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 3.87 (s, 3 H, OCH3), 4.06 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 5.55 (br s, 1 H, OH), 5.95 (br s, 2 H, NH2), 6.06 (s, 1 H, thiophene-CH), 6.81 (d, AB system, 1 H, J = 8.6 Hz, ArH), 6.82 (s, 1 H, ArH), 6.86 (d, AB system, 1 H, J = 8.6 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 13.82 (q), 55.80 (q), 59.35 (t), 105.02 (d), 105.96 (s), 111.79 (d), 113.19
(d), 121.82 (d), 130.55 (s), 141.27 (s), 144.59 (s), 145.29 (s), 163.72 (s), 165.66
(s). HRMS: m/z calcd for C14H15NO4S [M+]: 293.0722; found: 293.0710.Compound 2k: Prepared using DMF as the solvent; purified by recrystallization (EtOH); yield:
63%; white powder; mp 193-195 °C (EtOH). 1H NMR (400 MHz, DMSO-d
6): δ = 0.94 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 2.05 (s, 3 H, CH
3CO), 3.97 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 6.11 (s, 1 H, thiophene-CH), 7.15 (d, 2 H, J = 8.4 Hz, ArH), 7.34 (s, 2 H, NH2), 7.50 (d, 2 H, J = 8.4 Hz, ArH), 9.88 (s, 1 H, NHCO). 13C NMR (400 MHz, DMSO-d
6): δ = 13.77 (q), 23.92 (q), 58.56 (t), 102.89 (s), 104.62 (d), 117.73 (d), 128.76
(d), 132.89 (s), 137.84 (s), 140.17 (s), 164.68 (s), 165.00 (s), 168.08 (s). HRMS:
m/z calcd for C15H16N2O3S [M+]: 304.0882; found: 304.0892.Compound 2l: Purified by method A (CHCl3); yield: 44%; white powder; mp 189-190 °C (CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.47 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 3.61 (s, 2 H, CH2), 4.44 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 6.12 (br s, 2 H, NH2), 7.40 (dd, 1 H, J = 8.4, 0.8 Hz, ArH), 7.52 (d, 1 H, J = 0.8 Hz, ArH), 8.06 (d, 1 H, J = 8.4 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 14.56 (q), 34.09 (t), 60.05 (t), 101.15 (s), 118.03 (s), 122.99 (d), 125.54
(s), 126.97 (d), 129.39 (d), 138.82 (s), 141.28 (s), 148.05 (s), 165.41 (s), 167.02
(s). HRMS: m/z calcd for C14H12NO2SBr [M+]: 336.9773; found: 336.9764.Compound 2m: Purified by method B; yield: 49%; white powder; mp 96-97 °C (EtOH). 1H NMR (400 MHz, CDCl3): δ = 1.40 (d, 3 H, J = 7.2 Hz, CH
3CH), 1.49 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 3.73 (q, 1 H, J = 7.2 Hz, CH3CH), 4.45 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 6.12 (br s, 2 H, NH2), 7.17 (m, 1 H, ArH), 7.27 (m, 1 H, ArH), 7.36 (br d, 1 H, J = 7.6 Hz, ArH), 8.16 (br d, 1 H, J = 7.2 Hz, ArH). 13C NMR (400 MHz, CDCl3): δ = 14.59 (q), 18.61 (q), 40.40 (d), 59.96 (t), 101.24 (s), 121.78 (d), 122.69
(d), 124.23 (d), 126.52 (d), 132.62 (s), 138.88 (s), 139.79 (s), 151.76 (s), 165.75
(s), 166.85 (s). HRMS: m/z calcd for C15H15NO2S: 273.0823; found: [M+] 273.0821.Compound 2n: Purified by method B; yield: 25%; white powder; mp 187-188 (dec., EtOH). 1H NMR (400 MHz, DMSO-d
6): δ = 1.38 (t, 3 H, J = 7.2 Hz, CH
3CH2O), 3.52 (s, 2 H, CH2), 4.34 (q, 2 H, J = 7.2 Hz, CH3CH
2O), 6.64 (dd, 1 H, J = 8.0, 0.8 Hz, ArH), 7.09 (dd, 1 H, J = 8.0, 8.0 Hz, ArH), 7.44 (s, 2 H, NH2), 7.69 (dd, 1 H, J = 8.0, 0.8 Hz, ArH), 9.25 (s, 1 H, OH). 13C NMR (400 MHz, DMSO-d
6): δ = 14.42 (q), 31.22 (t), 59.07 (t), 98.07 (s), 111.71 (d), 113.38 (d), 124.44
(s), 127.33 (d), 130.77 (s), 141.02 (s), 141.13 (s), 152.27 (s), 164.63 (s), 168.32
(s). HRMS: m/z calcd for C14H13NO3S [M+]: 275.0616; found: 275.0611.
<A NAME="RD19106ST-19">19</A>
Elslager EF.
Jacob P.
Werbel LM.
J. Heterocycl. Chem.
1972,
9:
775