References and Notes
For selected examples of transition-metal-catalysed [4+2] cycloadditions, see:
<A NAME="RG25006ST-1A">1a</A>
Lautens M.
Klute W.
Tam W.
Chem. Rev.
1996,
96:
49
<A NAME="RG25006ST-1B">1b</A>
tom Dieck H.
Diercks R.
Angew. Chem., Int. Ed. Engl.
1983,
22:
778 ; Angew. Chem. 1983, 95, 801
<A NAME="RG25006ST-1C">1c</A>
Bakhtiar R.
Drader JJ.
Jacobsen DB.
J. Am. Chem. Soc.
1992,
114:
8304
<A NAME="RG25006ST-1D">1d</A>
Wender PA.
Jenkins TE.
J. Am. Chem. Soc.
1989,
111:
6432
<A NAME="RG25006ST-1E">1e</A>
Wender PA.
Smith TE.
J. Org. Chem.
1995,
60:
2962
<A NAME="RG25006ST-1F">1f</A>
Jolly RS.
Luedtke G.
Sheehan D.
Livinghouse T.
J. Am. Chem. Soc.
1990,
112:
4965
<A NAME="RG25006ST-1G">1g</A>
Wender PA.
Jenkins TE.
Suzuki S.
J. Am. Chem. Soc.
1995,
117:
1843
<A NAME="RG25006ST-1H">1h</A>
Brunner H.
Reimer A.
Bull. Chem. Soc. Fr.
1997,
134:
307
<A NAME="RG25006ST-1I">1i</A>
Lautens M.
Tam W.
Lautens JC.
Edwards LG.
Crudden CM.
Smith AC.
J. Am. Chem. Soc.
1995,
117:
6863
For cobalt-catalysed Diels-Alder reactions with functionalised building blocks, see:
<A NAME="RG25006ST-2A">2a</A>
Hilt G.
Hess W.
Harms K.
Org. Lett.
2006,
8:
3287
<A NAME="RG25006ST-2B">2b</A>
Hilt G.
Lüers S.
Smolko KI.
Org. Lett.
2005,
7:
251
<A NAME="RG25006ST-2C">2c</A>
Hilt G.
Galbiati F.
Synlett
2005,
829
<A NAME="RG25006ST-2D">2d</A>
Hilt G.
Lüers S.
Harms K.
J. Org. Chem.
2004,
69:
624
<A NAME="RG25006ST-2E">2e</A>
Hilt G.
Smolko KI.
Angew. Chem. Int. Ed.
2003,
42:
2795 ; Angew. Chem. 2003, 115, 2901
<A NAME="RG25006ST-2F">2f</A>
Hilt G.
Smolko KI.
Lotsch BV.
Synlett
2002,
1081
<A NAME="RG25006ST-3">3</A>
The alkynyl phosphine derivatives seem to coordinate to the cobalt catalyst via the
phosphorus functionality, blocking the free coordination sites necessary for the Diels-Alder
reaction. Higher catalyst loading did not restore the reactivity, as it did in the
case of alkynyl sulfide derivatives (ref. 2d).
<A NAME="RG25006ST-4">4</A>
The reduction of the amount of zinc iodide reduced the reactivity of the catalyst
system considerably. The yields of dihydroaromatic intermediates or the final products
4 were not diminished by the considerable amount of inorganic components.
<A NAME="RG25006ST-5">5</A>
The separation of the E/Z stereoisomers is possible after column chromatography.
<A NAME="RG25006ST-6">6</A>
General Procedure.
Under an argon atmosphere, ZnI2 (319 mg, 1.0 mmol, 2.0 equiv), zinc dust (20 mg, 0.3 mmol, 60 mol%) and CoBr2 (dppe) (62 mg, 0.1 mmol, 20 mol%) were suspended in dry CH2Cl2 (10 mL). After formation of the active catalytic species, recognisable when the green
suspension turned deep brown, prop-2-ynyl(triphenyl)phosphonium bromide (1, 191 mg, 0.5 mmol, 1.0 equiv) and 2,3-dimethyl-1,3-butadiene (0.75 mmol, 62 mg, 85
µL, 1.5 equiv) were added. The resulting mixture was stirred at r.t. for 30 min. After
cooling the solution down in an ice bath, t-BuOK (281 mg, 2.5 mmol, 5.0 equiv) and 4-nitrobenzaldehyde (91 mg, 0.6 mmol, 1.2
equiv) were added at 0 °C. After the addition was completed, the reaction mixture
was stirred one additional hour at ambient temperature and then filtered over a short
pad of silica gel (eluent: pentane-MTBE, 1:1). The filtrate was concentrated under
reduced pressure to give an oily residue that was dissolved in benzene (10 mL) and
oxidised with DDQ (170 mg, 0.75 mmol, 1.5 equiv) at r.t. After 2 h the reaction mixture
was washed twice with aq basic thiosulfate solution (10% NaOH, 10% Na2S2O3, 2 × 10 mL). The aqueous phases were combined, extracted with MTBE (20 mL) and the
combined organic phases were dried over MgSO4. After evaporating the solvent under reduced pressure, the crude product was purified
by column chromatography on silica gel (eluent: pentane-MTBE, 100:1) to give 108 mg
(85%) of 4e as a yellow solid.
E-isomer: 1H NMR (500 MHz, CDCl3): δ = 8.20 (d, 2 H, J = 8.8 Hz), 7.60 (d, 2 H, J = 8.8 Hz), 7.33 (s, 1 H), 7.29 (d, 1 H, J = 7.8 Hz), 7.22 (d, 1 H, J = 16.3 Hz), 7.16 (d, 1 H, J = 7.8 Hz), 7.08 (d, 1 H, J = 16.3 Hz), 2.31 (s, 3 H), 2.30 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 146.5, 144.2, 137.8, 137.0, 133.8, 133.4, 130.1, 128.2, 126.6, 125.1, 124.6,
124.1, 19.8, 19.6.
Z-isomer: 1H NMR (500 MHz, CDCl3): δ = 8.07 (d, 2 H, J = 8.7 Hz), 7.40 (d, 2 H, J = 8.7 Hz), 7.01 (s, 1 H), 7.01 (d, 1 H, J = 7.0 Hz), 6.94 (d, 1 H, J = 7.8 Hz), 6.76 (d, 1 H, J = 12.2 Hz), 6.54 (d, 1 H, J = 12.2 Hz), 2.26 (s, 3 H), 2.20 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 146.3, 144.5, 136.7, 136.5, 134.0, 133.5, 130.0, 129.7, 129.5, 127.0, 126.1,
123.4, 19.5, 19.5. IR (KBr): 3070, 2972, 1590, 1514, 1452, 1344, 1183, 1109, 972,
866, 834, 814, 750, 710, 690 cm-1. MS (EI): m/z = 253 [M+], 223, 207, 192, 178, 165, 91. HRMS (EI): m/z calcd for C16H15NO2: 253.1103; found: 253.1106.
For recent examples of Wittig reactions with allylic-type phosphonium salts, see:
<A NAME="RG25006ST-7A">7a</A>
Ackermann M.
Berger S.
Tetrahedron
2005,
61:
6764
<A NAME="RG25006ST-7B">7b</A>
Otero MP.
Torrado A.
Pazos Y.
J. Org. Chem.
2002,
67:
5876
<A NAME="RG25006ST-7C">7c</A>
Qing F.-L.
Yue X.-J.
Chin. J. Chem.
2000,
18:
76
<A NAME="RG25006ST-7D">7d</A>
Qing F.-L.
Yue X.-J.
Tetrahedron Lett.
1997,
38:
8067
<A NAME="RG25006ST-8">8</A>
Investigations towards the synthesis of combretastatin derivatives are underway.
<A NAME="RG25006ST-9">9</A>
Hilt G.
Lüers S.
Polborn K.
Isr. J. Chem.
2001,
41:
317