Zusammenfassung
Der Natrium-Iodid-Symporter (NIS) vermittelt als intrinsisches Membranprotein den
aktiven Transport von Iodid in die Schilddrüse sowie eine Reihe extrathyreoidaler
Organe, insbesondere die laktierende Brustdrüse. Neben seiner Schlüsselrolle in der
Schilddrüsenphysiologie bildet NIS die Grundlage der diagnostischen Schilddrüsenszintigrafie
sowie der therapeutischen Anwendung von Radioiod bei der Behandlung benigner und maligner
Schilddrüsenerkrankungen, und stellt damit eines der ältesten Targets molekularer
Bildgebung und Therapie dar. In Anlehnung an die seit mehr als 60 Jahren mit großem
Erfolg beim Schilddrüsenkarzinom eingesetzten Radioiodtherapie, ermöglicht die Klonierung
und Charakterisierung des NIS-Gens die Entwicklung eines neuen, zytoreduktiven Gentherapieansatzes
auf dem Boden der gezielten NIS-Expression in thyreoidalen und extrathyreoidalen Tumoren
gefolgt von der therapeutischen Applikation von 131I oder alternativer Radionuklide, wie 188Re oder 211At. Darüber hinaus erlaubt die Möglichkeit des direkten, nicht-invasiven Imagings
funktioneller NIS-Expression mittels 123I- und 99mTc-Szintigrafie oder 124I-PET-Imaging den Einsatz von NIS als neuem Reportergen. Zusammenfassend eröffnet
die Doppelfunktion von NIS als diagnostisches und therapeutisches Gen sowie der Nachweis
extrathyreoidaler endogener NIS-Expression in Mammakarzinomen viel versprechende Perspektiven
in der Nuklearmedizin und molekularen Onkologie für die diagnostische und therapeutische
Applikation von NIS auch außerhalb der Schilddrüse.
Abstract
The sodium iodide symporter (NIS) is an intrinsic plasma membrane glycoprotein that
mediates the active transport of iodide in the thyroid gland and a number of extrathyroidal
tissues, in particular lactating mammary gland. In addition to its key function in
thyroid physiology, NIS-mediated iodide accumulation allows diagnostic thyroid scintigraphy
as well as therapeutic radioiodine application in benign and malignant thyroid disease.
NIS therefore represents one of the oldest targets for molecular imaging and therapy.
Based on the effective administration of radioiodine that has been used for over 60
years in the management of follicular cell-derived thyroid cancer, cloning and characterization
of the NIS gene has paved the way for the development of a novel cytoreductive gene
therapy strategy based on targeted NIS expression in thyroidal and nonthyroidal cancer
cells followed by therapeutic application of 131I or alternative radionuclides, including 188Re and 211At. In addition, the possibility of direct and non-invasive imaging of functional
NIS expression by 123I- and 99mTc-scintigraphy or 124I-PET-imaging allows the application of NIS as a novel reporter gene. In conclusion,
the dual role of NIS as diagnostic and therapeutic gene and the detection of extrathyroidal
endogenous NIS expression in breast cancer open promising perspectives in nuclear
medicine and molecular oncology for diagnostic and therapeutic application of NIS
outside the thyroid gland.
Schlüsselwörter
Natrium-Iodid-Symporter - Radioiodtherapie - molekulare Bildgebung - molekulare Therapie
- NIS-Gentherapie - NIS-Reportergen - Mammakarzinom - Radionuklidtherapie
Key words
sodium iodide symporter (NIS) - radioiodine therapy - molecular imaging - molecular
therapy - NIS gene therapy - NIS reporter gene - mammary cancer - radionuclide therapy
Literatur
- 1
Spitzweg C, Joba W, Eisenmenger W, Heufelder A E.
Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues
and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary
gland, and gastric mucosa.
J Clin Endocrinol Metab.
1998;
83
1746-1751
- 2
Spitzweg C, Joba W, Schriever K, Goellner J R, Morris J C, Heufelder A E.
Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands.
J Clin Endocrinol Metab.
1999;
84
4178-4184
- 3
Jhiang S M, Cho J-Y, Ryu K-Y, De Young B R, Smanik P A, McGaughy V R, Fischer A H,
Mazzaferri E L.
An immunohistochemical study of Na+/I- symporter in human thyroid tissues and salivary
gland tissues.
Endocrinology.
1998;
139
4416-4419
- 4
Tazebay U H, Wapnir I L, Levy O, Dohan O, Zuckier L S, Zhao Q H, Deng H F, Amenta P S,
Fineberg S, Pestell R G, Carrasco N.
The mammary gland iodide transporter is expressed during lactation and in breast cancer.
Nat Med.
2000;
6
871-878
- 5
Spitzweg C, Dutton C M, Castro M R, Bergert E R, Goellner J R, Heufelder A E, Morris J C.
Expression of the sodium iodide symporter in human kidney.
Kidney Int.
2001;
59
1013-1023
- 6
Dai G, Levy O, Carrasco N.
Cloning and characterization of the thyroid iodide transporter.
Nature.
1996;
379
458-460
- 7
Smanik P A, Liu Q, Furminger T L, Ryu K, Xing S, Mazzaferri E L, Jhiang S M.
Cloning of the human sodium iodide symporter.
Biochem Biophys Res Commun.
1996;
226
339-345
- 8
Spitzweg C, Morris J C.
The sodium iodide symporter: its pathophysiological and therapeutic implications.
Clin Endocrinol.
2002;
57
559-574
- 9
Van Sande J, Massart C, Beauwens R, Schoutens A, Costagliola S, Dumonat J E, Wolff J.
Anion selectivity by the sodium iodide symporter.
Endocrinology.
2003;
144
247-252
- 10
Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter C S, Carrasco N.
The sodium/Iodide symporter (NIS): Characterization, regulation, and medical significance.
Endocrine Rev.
2003;
24
48-77
- 11
Kogai T, Endo T, Saito T, Miyazaki A, Kawaguchi A, Onaya T.
Regulation of thyroid-stimulating hormone of sodium/iodide symporter gene expression
and protein levels in FRTL-5 cells.
Endocrinology.
1997;
138
2227-2232
- 12
Saito T, Endo T, Kawaguchi A, Ikeda M, Nakazato M, Kogai T, Onaya T.
Increased expression of the Na+/I- symporter in cultured human thyroid cells exposed to thyrotropin and in Graves' thyroid
tissue.
J Clin Endocrinol Metab.
1997;
82
3331-3336
- 13
Spitzweg C, Heufelder A E, Morris J C.
Thyroid iodine transport.
Thyroid.
2000;
10
321-330
- 14
Spitzweg C, Joba W, Morris J C, Heufelder A E.
Regulation of sodium-iodide symporter gene expression in FRTL-5 rat thyroid cells.
Thyroid.
1999;
9
821-830
- 15
Wolff J, Chaikoff I L.
Plasma inorganic iodide as a homeostatic regulator of thyroid function.
J Biol Chem.
1948;
174
555-564
- 16
Castro M R, Bergert E R, Beito T G, McIver B D, Goellner J R, Morris J C.
Development of monoclonal antibodies against the human sodium iodide symporter: Immunohistochemical
characterization of this protein in thyroid cells.
J Clin Endocrinol Metab.
1999;
84
2957-2962
- 17
Caillou B, Troalen F, Baudin E, Talbot M, Filetti S, Schlumberger M, Bidart J -M.
Na+/I- symporter distribution in human thyroid tissues: An immunohistochemical study.
J Clin Endocrinol Metab.
1998;
83
4102-4106
- 18
Joba W, Spitzweg C, Schriever K, Heufelder A E.
Analysis of human sodium/iodide symporter, thyroid transcription factor-1, and paired-box-protein-8
gene expression in benign thyroid diseases.
Thyroid.
1999;
9
455-466
- 19
Krohn K, Führer D, Bayer Y, Eszlinger M, Brauer V, Neumann S, Paschke R.
Molecular pathogenesis of euthyroid and toxic multinodular goiter.
Endocrine Rev.
2005;
26
504-524
- 20
Russo D, Bulotta S, Bruno R, Arturi F, Giannasio P, Derwahl M, Bidart J-M, Schlumberger M,
Filetti S.
Sodium/iodide symporter (NIS) and pendrin are expressed differently in hot and cold
nodules of thyroid toxic multinodular goiter.
Eur J Endocrinol.
2001;
145
591-597
- 21
Tonacchera M, Viacava P, Agretti P, De Marco G, Perri A, Di Cosmo C, De Servi M, Miccoli P,
Lippi F, Naccarato A G, Pinchera A, Chiovato L, Vitti P.
Benign nonfunctioning thyroid adenomas are characterized by a defective targeting
to cell membrane or a reduced expression of the sodium iodide symporter protein.
J Clin Endocrinol Metab.
2001;
87
352-357
- 22 Mazzaferri E L. Carcinoma of follicular epithelium: Radioiodine and other treatments
and outcomes. In: Braverman LE, Utiger RD (eds). The Thyroid: A Fundamental and Clinical
Text. 7th ed. Lippincott-Raven, Philadelphia 1996; 922-945
- 23
Castro M R, Bergert E R, Beito T G, Roche P C, Ziesmer S C, Jhiang S M, Goellner J R,
Morris J C.
Monoclonal antibodies against the human sodium iodide symporter: Utility for immunocytochemistry
of thyroid cancer.
J Endocrinol.
1999;
163
495-504
- 24
Castro M R, Bergert E R, Goellner J R, Hay I D, Morris J C.
Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated
thyroid cancer: Correlation with 131I uptake.
J Clin Endocrinol Metab.
2001;
86
5627-5632
- 25
Dohan O, Baloch Z, Banrevi Z, Livolsi V, Carrasco N.
Predominant intracellular overexpression of the Na+/I- symporter (NIS) in a large
sampling of thyroid cancer cases.
J Clin Endocrinol Metab.
2001;
86
2697-2700
- 26
Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J.
Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer
cell lines and suppresses expression of functional symporter in nontransformed FRTL-5
rat thyroid cells.
Biochem Biophys Res Commun.
1997;
240
832-838
- 27
Simon D, Körber C, Krausch M, Segering J, Groth P, Görges R, Grünwald F, Müller-Gärtner H W,
Schmutzler C, Köhrle J, Röher H D, Reiners C.
Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer:
final results of a pilot study.
Eur J Nucl Med Mol Imaging.
2002;
29
775-782
- 28
Grüning T, Tiepolt C, Zöphel K, Bredow J, Kropp J, Franke W -G.
Retinoic acid for redifferentiation of thyroid cancer - does it hold its promise.
Eur J Endocrinol.
2003;
148
395-402
- 29
Courbon F, Zerdoud S, Bastie D, Archambaud F, Hoff M, Eche N, Berry I, Caron P.
Defective efficacy of retinoic acid treatment in patients with metastatic thyroid
carcinoma.
Thyroid.
2006;
16
1025-1031
- 30
Spitzweg C, Harrington K J, Pinke L A, Vile R G, Morris J C.
The sodium iodide symporter and its potential in cancer therapy.
J Clin Endocrinol Metab.
2001;
86
3327-3335
- 31
Eskin B A.
Iodine and mammary cancer.
Adv Exp Med Biol.
1977;
91
293-304
- 32
Brown-Grant K.
The iodide concentrating mechanism of the mammary gland.
J Physiol.
1957;
135
644-654
- 33
Cho J-Y, Leveille R, Kao R, Rousset B, Parlow A F, Burak W E, Mazzaferri E L, Jhiang S M.
Hormonal regulation of radioiodide uptake activity and Na+/I- symporter expression
in mammary glands.
J Clin Endocrinol Metab.
2000;
85
2936-2943
- 34
Rillema J A, Yu T X.
Prolactin stimulation of iodide uptake into mouse mammary gland explants.
Am J Physiol.
1996;
271
E879-E882
- 35
Rillema J A, Yu T X, Jhiang S M.
Effect of prolactin on sodium iodide symporter expression in mouse mammary gland explants.
Am J Physiol Endocrinol Metab.
2000;
279
E769-E772
- 36
Knostman K A, Cho J -Y, Ryu K-Y, Lin X, McCubrey J A, Hla T, Liu C H, Di Carlo E,
Keri R, Zhang M, Hwang D Y, Kisseberth W C, Capen C C, Jhiang S M.
Signaling through 3′5′-cyclic adenosine monophosphate and phosphoinositide-3 kinase
induces sodium/iodide symporter expression in breast cancer.
J Clin Endocrinol Metab.
2004;
89
5196-5203
- 37
Rudnicka L, Sinczak A, Szybinski P, Huszno B, Stachura J.
Expression of the Na(+)/I(-) symporter in invasive ductal breast cancer.
Folia Histochem Cytobiol.
2003;
41
37-40
- 38
Moon D H, Lee S J, Park K Y, Park K K, Ahn S H, Pai M S, Chang H, Lee H K, Ahn I-M.
Correlation between 99mTc-pertechnetate uptakes and expression of human sodium iodide symporter gene in breast
tumor tissues.
Nucl Med Biol.
2001;
28
829-834
- 39
Eskin B A, Parker J A, Bassett J G, George D L.
Human breast uptake of radioactive iodine.
Obstet Gynecol.
1974;
44
398-402
- 40
Cancroft E T, Goldsmith S J.
99mTc-pertechnetate scintigraphy as an aid in the diagnosis of breast masses.
Radiology.
1973;
106
441-444
- 41
Wapnir I L, Goris M, Yudd A, Dohan O, Adelman D, Nowels K, Carrasco N.
The Na+/I- symporter mediates iodide uptake in breast cancer metastases and can be
selectively down-regulated in the thyroid.
Clin Cancer Res.
2004;
10
4294-4302
- 42
Dadachova E, Nguyen A, Lin E Y, Gnatovskiy L, Lu P, Pollard J W.
Treatment with rhenium-188-perrhenate and iodine-131 of NIS-expressing mammary cancer
in a mouse model remarkably inhibited tumor growth.
Nucl Med Biol.
2005;
32
695-700
- 43
Kogai T, Schultz J, Johnson L, Huang M, Brent G.
Retinoic acid induces sodium/iodide symporter gene expression and radioiodine uptake
in the MCF-7 breast cancer cell line.
Proc Natl Acad Sci, USA.
2000;
97
8519-8524
- 44
Kogai T, Kanamoto Y, Che L H, Taki K, Moatamed F, Schultz J J, Brent G A.
Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodine
uptake in mouse breast cancer models.
Cancer Res.
2004;
64
415-422
- 45
Unterholzner S, Willhauck M J, Cengic N, Schütz M, Göke B, Morris J C, Spitzweg C.
Dexamethasone stimulation of retinoic acid-induced sodium iodide symporter expression
and cytotoxicity of 131-I in breast cancer cells.
J Clin Endocrinol and Metab.
2006;
91
69-78
- 46
Kogai T, Kanamoto Y, Li A I, Che L H, Ohashi E, Taki K, Chandraratna R A, Saito T,
Brent G A.
Differential regulation of sodium/iodide symporter gene expression by nuclear receptor
ligands in MCF-7 breast cancer cells.
Endocrinology.
2005;
146
3059-3069
- 47
Dohan O, De la Vieja A, Carrasco N.
Hydrocortisone and purinergic signaling stimulate NIS-mediated iodide transport in
breast cancer cells.
Mol Endocrinol.
2006;
20
1121-1137
- 48
Berger F, Unterholzner S, Diebold J, Knesewitsch P, Hahn K, Spitzweg C.
Mammary radioiodine accumulation due to functional sodium iodide symporter expression
in a benign fibroadenoma.
Biochem Biophys Res Commun.
2006;
349
1258-1263
- 49
Shimura H, Haraguchi K, Myazaki A, Endo T, Onaya T.
Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I- symporter gene.
Endocrinology.
1997;
138
4493-4496
- 50
Smit J W, Schroder-Van der Elst J P, Karperien M, Que I, Stokkel M, van der Heide D,
Romijn J A.
Iodide kinetics and experimental (131)I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular
thyroid carcinoma cell line.
J Clin Endocrinol Metab.
2002;
87
1247-1253
- 51
Cho J-Y, Xing S, Liu X, Buckwalter T LF, Hwa L, Sferra T J, Chiu I-M, Jhiang S M.
Expression and activity of human Na+/I- symporter in human glioma cells by adenovirus-mediated
gene delivery.
Gene Ther.
2000;
7
740-749
- 52
Cho J-Y, Shen D HY, Yang W, Williams B, Buckwalter T LF, La Perle K MD, Hinkle G,
Pozderac R, Kloos R, Nagaraja H N, Barth R F, Jhiang S M.
In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer
in animal model of intracerebral gliomas.
Gene Ther.
2002;
9
1139-1145
- 53
Mandell R B, Mandell L Z, Link C J.
Radioisotope concentrator gene therapy using the sodium/iodide symporter gene.
Cancer Res.
1999;
59
661-668
- 54
Boland A, Ricard M, Opolon P, Bidart J -M, Yeh P, Filetti S, Schlumberger M, Perricaudet M.
Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors
for a targeted radiotherapy.
Cancer Res.
2000;
60
3484-3492
- 55
Carlin S, Cunningham S H, Boyd M, McCluskey A G, Mairs R J.
Experimental targeted radioiodide therapy following transfection of the sodium iodide
symporter gene: effect on clonogenicity in both two- and three-dimensional models.
Cancer Gene Ther.
2000;
7
1529-1536
- 56
Dingli D, Peng K-W, Harvey M E, Greipp P R, O'Connor M K, Cattaneo R, Morris J C,
Russell S J.
Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus
expressing the thyroidal sodium iodide symporter.
Blood.
2004;
103
1641-1646
- 57
Faivre J, Clerc J, Gerolami R, Herve J, Longuet M, Liu B, Roux J, Moal F, Perrricaudet M,
Brechot C.
Long-term radioiodine retention and regression of liver cancer after sodium iodide
symporter gene transfer in wistar rats.
Cancer Res.
2004;
64
8045-8051
- 58
Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, Peschke P, Kübler W, Debus J,
Eisenhut M.
Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells.
J Nucl Med.
2001;
42
317-325
- 59
Spitzweg C, Zhang S, Bergert E R, Castro M R, McIver B D, Tindall D J, Young C YF,
Morris J C.
Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium
iodide symporter in prostate cancer cell lines.
Cancer Res.
1999;
59
2136-2141
- 60
Spitzweg C, O'Connor M K, Bergert E R, Tindall D J, Young C YF, Morris J C.
Treatment of prostate cancer by radioiodine therapy after tissue-specific expression
of the sodium iodide symporter.
Cancer Res.
2000;
60
6526-6530
- 61
Spitzweg C, Scholz I V, Bergert E R, Tindall D J, Young C YF, Göke B, Morris J C.
Retinoic acid-induced stimulation of sodium iodide symporter (NIS) expression and
cytotoxicity of radioiodine in prostate cancer cells.
Endocrinology.
2003;
144
3423-3432
- 62
Scholz I V, Cengic N, Göke B, Morris J C, Spitzweg C.
Dexamethasone enhances the cytotoxic effect of radioiodine therapy in prostate cancer
cells expressing the sodium iodide symporter (NIS).
J Clin Endocrinol Metab.
2004;
89
1108-1116
- 63
Spitzweg C, Dietz A B, O'Connor M K, Bergert E R, Tindall D J, Young C YF, Morris J C.
In vivo sodium iodide symporter gene therapy of prostate cancer.
Gene Ther.
2001;
8
1524-1531
- 64
Kakinuma H, Bergert E R, Spitzweg C, Cheville J C, Lieber M M, Morris J C.
Probasin Promoter (ARR2PB) driven, prostate specific expression of h-NIS for targeted
radioiodine therapy of prostate cancer.
Cancer Res.
2003;
63
7840-7844
- 65
Dwyer R M, Schatz S M, Bergert E R, Myers R M, Harvey M E, Classic K L, Blanco M C,
Frisk C S, Marler R J, Davis B J, O'Connor M K, Russell S J, Morris J C.
A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide
symporter for radioiodide imaging and therapy of locally recurrent prostate cancer.
Mol Ther.
2005;
12
835-841
- 66
Scholz I V, Cengic N, Baker C H, Harrington K J, Maletz K, Bergert E R, Vile R, Göke B,
Morris J C, Spitzweg C.
Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter
gene transfer.
Gene Ther.
2005;
12
272-280
- 67
Cengic N, Baker C H, Schutz M, Göke B, Morris J C, Spitzweg C.
A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy
following tissue-specific sodium iodide symporter gene expression.
J Clin Endocrinol Metab.
2005;
90
4457-4464
- 68 Willhauck M J, Sharif-Samani B, Cengic N, Mohr L, Geissler M, Göke B, Morris J C,
Spitzweg C. Alpha fetoprotein promoter-targeted sodium iodide symporter gene therapy
of hepatocellular carcinoma. 88th Annual Meeting of the Endocrine Society, Boston,
USA, 2006
- 69
Chen L, Altmann A, Mier W, Eskerski H, Leotta K, Guo L, Zhu R, Haberkorn U.
Radioiodine therapy of hepatoma using targeted transfer of the human sodium/iodide
symporter gene.
J Nucl Med.
2006;
47
854-862
- 70
Schipper M L, Weber A, Behe M, Göke R, Joba W, Schmidt H, Bert T, Simon B, Arnold R,
Heufelder A E, Behr T M.
Radioiodide treatment after sodium iodide symporter gene transfer is a highly effective
therapy in neuroendocrine tumor cells.
Cancer Res.
2003;
63
1333-1338
- 71
Dingli D, Diaz R M, Bergert E R, O'Connor M K, Morris J C, Russell S J.
Genetically targeted radiotherapy for multiple myeloma.
Blood.
2003;
102
489-496
- 72
Dwyer R M, Bergert E R, O'Connor M K, Gendler S J, Morris J C.
In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven
expression of the sodium iodide symporter.
Clin Cancer Res.
2005;
11
1483-1489
- 73
Dwyer R M, Bergert E R, O'Connor M K, Gendler S J, Morris J C.
Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor
xenografts in mice.
Gene Ther.
2006;
13
60-66
- 74
Dwyer R M, Bergert E R, O'Connor M K, Gendler S J, Morris J C.
Adenovirus-mediated and targeted expression of the sodium-iodide symporter permits
in vivo radioiodide imaging and therapy of pancreatic tumors.
Hum Gene Ther.
2006;
17
661-668
- 75
Dingli D, Bergert E R, Bajzer Z, O'Connor M K, Russell S J, Morris J C.
Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter.
Biochem Biophys Res Commun.
2004;
325
157-166
- 76
Boland A, Magnon C, Filetti S, Bidart J-M, Schlumberger M, Yeh P, Perricaudet M.
Transposition of the thyroid iodide uptake and organification system in nonthyroid
tumor cells by adenoviral vector-mediated gene transfers.
Thyroid.
2002;
12
19-26
- 77
Huang M, Batra R K, Kogai T, Lin Y Q, Hershman J M, Lichtenstein A, Sharma S, Zhu L X,
Brent G A, Dubinett S M.
Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention
mediated by the sodium iodide symporter in non-small cell lung cancer.
Cancer Gene Ther.
2001;
8
612-618
- 78
Zhang L, Sharma S, Zhu L X, Kogai T, Hershman J M, Brent G A, Dubinett S M, Huang M.
Nonradioactive iodide effectively induces apoptosis in genetically modified lung cancer
cells.
Cancer Res.
2003;
63
5065-5072
- 79
Elisei R, Vivaldi A, Ciampi R, Faviana P, Basolo F, Santini F, Traino C, Pacini F,
Pinchera A.
Treatment with drugs able to reduce iodine efflux significantly inceases the intracellular
retention time in thyroid cancer cells stably transfected with sodium iodide symporter
(NIS) cDNA.
J Clin Endocrinol Metab.
2006;
91
2389-2395
- 80
Dadachova E, Bouzahzah B, Zuckier L S, Pestell R G.
Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing
the sodium/iodide symporter (NIS).
Nucl Med Biol.
2002;
29
13-18
- 81
Petrich T, Helmeke H-J, Meyer G J, Knapp W H, Pötter E.
Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing
the human sodium/iodide symporter.
Eur J Nucl Med Mol Imaging.
2002;
29
842-854
- 82
Carlin S, Mairs R J, Welsh P, Zalutsky M R.
Sodium-iodide symporter (NIS)-mediated accumulation of (211At)astatide in NIS-transfected human cancer cells.
Nucl Med Biol.
2002;
29
729-739
- 83
Carlin S, Akabani G, Zalutsky M R.
In vitro cytotoxicity of 211At-Astatide and 131I-Iodide to glioma tumor cells expressing the sodium/iodide symporter.
J Nucl Med.
2003;
44
1827-1838
- 84
Petrich T, Quintanilla-Martinez L, Korkmaz Z, Samson E, Helmeke H J, Meyer G J, Knapp W H,
Pötter E.
Effective cancer therapy with the a-particle emitter [211-At]astatine in a mouse model
of genetically modified sodium/iodide symporter-expressing tumors.
Clin Cancer Res.
2006;
12
1342-1348
- 85
Dingli D, Russell S J, Morris J C.
In vivo imaging and tumor therapy with the sodium iodide symporter.
J Cell Biochem.
2003;
90
1079-1086
- 86
Marsee D K, Shen D HY, MacDonald L R, Vadysirisack D D, Lin X, Hinkle G, Kloos R T,
Jhiang S M.
Imaging of metastatic pulmonary tumors following NIS gene transfer using single photon
emission computed tomography.
Cancer Gene Ther.
2004;
11
121-127
- 87
Groot-Wassink T, Aboagye E O, Wang Y, Lemoine N R, Reader A J, Vassaux G.
Quantitative imaging of Na/I symporter transgene expression using positron emission
tomography in the living animal.
Mol Ther.
2004;
9
436-442
- 88
Groot-Wassink T, Aboagye E O, Wang Y, Lemoine N R, Keith W N, Vassaux G.
Noninvasive imaging of the transcriptional activities of human telomerase promoter
fragments in mice.
Cancer Res.
2004;
64
4906-4911
- 89
Dingli D, Kemp B J, O'Connor M K, Morris J C, Russell S J, Lowe V J.
Combined I-124 Positron Emission Tomography/Computed Tomography Imaging of NIS gene
expression in animal models of stably transfected and intravenously transfected tumors.
Mol Imaging Biol.
2006;
8
16-23
- 90
Niu G, Anderson R G, Madsen M T, Graham M M, Oberley L W, Domann F E.
Dual-expressing adenoviral vectors encoding the sodium iodide symporter for use in
noninvasive radiological imaging of therapeutic gene transfer.
Nucl Med Biol.
2006;
33
391-398
- 91
Miyagawa M, Beyer M, Wagner B, Anton M, Spitzweg C, Gansbacher B, Schwaiger M, Benger F M.
Cardiac reporter gene imaging using the human sodium/iodide symporter gene.
Cardiovasc Res.
2005;
65
195-202
- 92
Miyagawa M, Anton M, Wagner B, Haubner R, Souvatzoglou M, Gansbacher B, Schwaiger M,
Bengel F M.
Non-invasive imaging of cardiac transgene expression with PET: comparison of the human
sodium/iodide symporter gene and HSV1-tk as the reporter gene.
Eur J Nucl Med Mol Imaging.
2005;
32
1108-1114
- 93
Niu G, Krager K J, Graham M M, Hichwa R D, Domann F E.
Noninvasive radiological imaging of pulmonary gene transfer and expression using the
human sodium iodide symporter.
Eur J Nucl Med Mol Imaging.
2005;
32
534-540
- 94
Yang H S, Lee H, Kim S J, Lee W W, Yang Y-J, Moon D H, Park S-W.
Imaging of human sodium-iodide symporter gene expression mediated by recombinat adenovirus
in skeletal muscle of living rats.
Eur J Nucl Med Mol Imaging.
2004;
31
1304-1311
- 95
Vadysirisack D D, Shen D H, Jhiang S M.
Correlation of Na+/I- symporter expression and activity: implications of Na+/I- symporter
as an imaging reporter gene.
J Nucl Med.
2006;
47
182-190
PD Dr. C. Spitzweg
Medizinische Klinik und Poliklinik für Nuklearmedizin der Ludwig-Maximilians-Universität
München · Klinikum Großhadern
Marchioninistraße 15
81377 München
Phone: +49/89/7 09 50
Fax: +49/89/70 95 88 87
Email: Christine.Spitzweg@med.uni-muenchen.de