Abstract
Root respiration has been shown to increase with temperature, but less is known about
how this relationship is affected by the fungal partner in mycorrhizal root systems.
In order to test respiratory temperature dependence, in particular Q10 of mycorrhizal and non-mycorrhizal root systems, seedlings of Picea abies (L.) Karst. (Norway spruce) were inoculated with the ectomycorrhizal fungus Piloderma croceum (Eriksson and Hjortstam, SR430; synonym: Piloderma fallax: [Libert] Stalpers) and planted in soil respiration cuvettes (mycocosms). Temperature
dependence of hyphal respiration in sterile cultures was determined and compared with
respiration of mycorrhizal roots. Respiration rates of mycorrhizal and non-mycorrhizal
root systems as well as sterile cultures were sensitive to temperature. Q10 of mycorrhizal root systems of 3.0 ± 0.1 was significantly higher than that of non-mycorrhizal
systems (2.5 ± 0.2). Q10 of P. croceum in sterile cultures (older than 2 months) was similar to that of mycorrhizal root
systems, suggesting that mycorrhizae may have a large influence on the temperature
sensitivity of roots in spite of their small biomass. Our results stress the importance
of considering mycorrhization when modeling the temperature sensitivity of spruce
roots.
Key words
Picea abies (L.) Karst. (Norway spruce) -
Piloderma croceum
- root respiration - mycorrhizal respiration - temperature dependence - Q10 .
References
1
Agerer R., Raidl S..
Distance-related semi-quantitative estimation of extramatrical ectomycorrhizal mycelia
of Cortinarius obtusus and Tylospora asterophora .
Mycological Progress.
(2004);
3
57-64
2
Andersen C. P., Rygiewicz P. T..
Stress interactions and mycorrhizal plant response: understanding carbon allocation
priorities.
Environmental Pollution.
(1991);
73
217-244
3
Andersen C. P., Rygiewicz P. T..
Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone.
New Phytologist.
(1995);
131
471-480
4
Atkin O. K., Edwards E. J., Loveys B. R..
Response of root respiration to changes in temperature and its relevance to global
warming.
New Phytologist.
(2000);
147
141-154
5
Bååth E., Söderström B..
Fungal biomass and fungal immobilization of plant nutrients in Swedish coniferous
forest soils.
Revue d'Ecologie et de Biologie du Sol.
(1979);
16
477-489
6
Bååth E., Wallander H..
Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system.
Global Change Biology.
(2003);
9
1788-1791
7
Boone R. D., Nadelhoffer K. J., Canary J. D., Kaye J. P..
Roots exert a strong influence on the temperature sensitivity of soil respiration.
Nature.
(1998);
396
570-572
8
Brand F..
Ektomykorrhizen an Fagus sylvatica . Charakterisierung und Identifizierung, ökologische Kennzeichnung und unsterile Kultivierung.
Libri Botanici.
(1991);
2
1-228
9
Buchmann N..
Biotic and abiotic factors controlling soil respiration rates in Picea abies stands.
Soil Biology and Biochemistry.
(2000);
32
1625-1635
10
Burton A. J., Pregitzer K. S., Ruess R. W., Hendrick R. L., Allen M. F..
Root respiration in North American forests: effects of nitrogen concentration and
temperature across biomes.
Oecologia.
(2002);
131
559-568
11
Epron D., Le Dantec V., Dufrene E., Granier A..
Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration
in a beech forest.
Tree Physiology.
(2001);
21
145-152
12
Hanson P. J., Edwards N. T., Garten C. T., Andrews J. A..
Separating root and soil microbial contributions to soil respiration: a review of
methods and observations.
Biogeochemistry.
(2000);
48
115-146
13
Heinemeyer A., Ineson P., Ostle N., Fitter A. H..
Respiration of the external mycelium in the abuscular mycorrhizal symbiosis shows
strong dependence on recent photosynthates and acclimation to temperature.
New Phytologist.
(2006);
171
159-170
14
Herrmann S., Oelmüller R., Buscot F..
Manipulation of the onset of ectomycorrhiza formation by indole-3-acetic acid, activated
charcoal or relative humidity in the association between oak microcuttings and Piloderma croceum : influence on plant development and photosynthesis.
Journal of Plant Physiology.
(2004);
161
509-517
15
Högberg P., Nordgren A., Buchmann N., Taylor A. F. S., Ekblad A., Högberg M. N., Nyberg G.,
Ottosson-Löfvenius M., Read D. J..
Large-scale forest girdling shows that current photosynthesis drives soil respiration.
Nature.
(2001);
411
789-792
16
Janssens I. A., Pilegaard K..
Large seasonal change in Q
10 of soil respiration in a beech forest.
Global Change Biology.
(2003);
9
911-918
17
Jones C. D., Cox P., Huntingford C..
Uncertainty in climate-carbon cycle projections associated with the sensitivity of
soil respiration.
Tellus.
(2003);
55B
642-648
18
Kirschbaum M. U. F..
Will changes in soil organic carbon act as a positive or negative feedback on global
warming?.
Biogeochemistry.
(2000);
48
21-51
19
Kirschbaum M. U. F..
The temperature dependence of soil organic matter decomposition, and the effect of
global warming on soil organic C storage.
Soil Biology and Biochemistry.
(1995);
27
753-760
20 Kunzweiler K., Kottke I..
Quantifizierung von Myzel im Waldboden. Einsele, G., ed. Das landschaftsökologische Forschungsprojekt Naturpark Schönbuch. Weinheim;
VCH Verlagsgesellschaft (1986): 429-444
21
Langley J., Johnson N. C., Koch G. W..
Mycorrhizal status influences the rate but not the temperature sensitivity of soil
respiration.
Plant and Soil.
(2005);
277
335-344
22
Law B. E., Ryan M. G., Anthoni P. M..
Seasonal and annual respiration of a ponderosa pine ecosystem.
Global Change Biology.
(1999);
5
169-182
23
Lipp C. C., Andersen C. P..
Role of carbohydrate supply in white and brown root respiration of ponderosa pine.
New Phytologist.
(2003);
160
523-531
24
Lloyd J., Taylor J. A..
On the temperature dependence of soil respiration.
Functional Ecology.
(1994);
8
315-323
25
Marx D. H..
The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to
pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi
and soil bacteria.
Phytopathology.
(1969);
59
153-163
26
Pietikainen J., Pettersson M., Bååth E..
Comparison of temperature effects on soil respiration and bacterial and fungal growth
rates.
FEMS Microbiology Ecology.
(2005);
52
49-58
27
Reichenstein M., Subke J.-A., Angeli A. C., Tenhunen J. D..
Does the temperature sensitivity of decomposition of soil organic matter depend upon
water content, soil horizon, or incubation time?.
Global Change Biology.
(2005);
11
1754-1767
28
Rygiewicz P. T., Miller S. L., Durall D. M..
A root-mycocosm for growing ectomycorrhizal hyphae apart from host roots while maintaining
symbiotic integrity.
Plant and Soil.
(1988);
109
281-284
29
Rygiewicz P. T., Andersen C. P..
Mycorrhizae alter quality and quantity of carbon allocated below ground.
Nature.
(1994);
369
58-60
30
Schubert R., Raidl S., Funk R., Bahnweg G., Müller-Starck G., Agerer R..
Quantitative detection of the agar-cultivated and rhizotron-grown ectomycorrhizal
fungus Piloderma croceum Erikss. and Hjortst. by ITS1-based fluorescent polymerase chain reaction in comparison
with direct microscopy.
Mycorrhiza.
(2003);
13
159-165
31
Schulze E. D., Hall A. E., Lange O. L., Walz H..
A portable steady-state porometer for measuring the carbon-dioxide and water-vapor
exchanges of leaves under natural conditions.
Oecologia.
(1982);
53
141-145
32 Smith S. E., Read D. J.. Mycorrhizal Symbiosis. San Diego, CA, USA; Academic Press
(1997): 605
33
Staddon P. L., Heinemeyer A., Fitter A. H..
Mycorrhizas and global environmental change: research at different scales.
Plant and Soil.
(2002);
344
253-261
34
Wieser G..
Seasonal variation of soil respiration in a Pinus cembra forest at the upper timberline in the Central Austrian Alps.
Tree Physiology.
(2004);
24
475-480
35
Yuste J. C., Janssens I. A., Carrara A., Ceulemans R..
Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity.
Global Change Biology.
(2004);
10
161-169
N. Koch
Department of Ecology, Ecophysiology of Plants Technische Universität München
Am Hochanger 13
85354 Freising
Germany
Email: kochnina@gmx.de
Editor: J. P. Sparks