Dtsch Med Wochenschr 2006; 131: S268-S273
DOI: 10.1055/s-2006-956288
Übersicht | Review article

© Georg Thieme Verlag KG Stuttgart · New York

Moderne Laborparameter in der Differentialdiagnostik des Diabetes mellitus Typ 2

Proinsulin, Adiponektin & CoCurrent laboratory parameters in the differential diagnosis of type 2 diabetes mellitusProinsulin, adiponectin and othersT. Forst1 , 2 , A. Pfützner1
  • 1Institut für klinische Forschung und Entwicklung, Mainz
  • 2Johannes Gutenberg-Universität Mainz
Further Information

Publication History

eingereicht: 22.2.2006

akzeptiert: 18.5.2006

Publication Date:
30 November 2006 (online)

Zusammenfassung

In den vergangenen Jahren konnten die pathophysiologischen Zusammenhänge zwischen Diabetes mellitus und dem Auftreten kardiovaskulärer Ereignisse weiter aufgeklärt werden. Die Insulinresistenz und das Auftreten einer β-Zell-Funktionsstörung können unabhängig von ihren Auswirkungen auf den Blutzucker einen direkten Effekt auf die Progression der Arteriosklerose ausüben. Der Einsatz zusätzlicher Laborparameter zur individuellen pathophysiologischen Charakterisierung von Patienten mit einem Diabetes mellitus Typ 2 könnte hierbei zu einer Verbesserung der Therapie und zu einer Reduktion des kardiovaskulären Risikos beitragen. Intaktes Proinsulin wird von der β-Zelle sezerniert, und der Anstieg dieses Biomarkers im Blut kann als Parameter der β-Zell-Dysfunktion gewertet werden. Erhöhte Spiegel an intaktem Proinsulin können ferner zur Diagnose einer Insulinresistenz mit einer Spezifität von 100 % bei einer Sensitivität von 50 % herangezogen werden. Ein weiterer biologischer Parameter zur Beurteilung der Insulinresistenz ist das vom viszeralen Fettgewebe sezernierte Adiponektin. Aufgrund seiner hohen Sensitivität eignet es sich insbesondere zur Verlaufsbeobachtung einer Insulinresistenz unter einer therapeutischen Intervention. Beide Biomarker haben einen hohen prädiktiven Wert zur Beurteilung des kardiovaskulären Risikos bei Typ-2-Diabetikern. Zur Beurteilung der vaskulären Inflammation kann eine Bestimmung des hoch sensitiven CRP zusätzliche Informationen zum kardiovaskulären Risiko liefern.

Summary

During the recent years increasing knowledge has been obtained in the understanding of the coincidence of type 2 diabetes and cardiovascular disease. Insulin resistance and beta cell failure were shown to have a direct impact in the pathogenesis of arteriosclerosis which goes far beyond the effects of elevated glucose levels. The use of additional laboratory parameters for the characterisation of patients with type 2 diabetes on a pathophysiological basis might improve treatment strategies and might help to reduce the cardiovascular risk in patients with type 2 diabetes. Intact proinsulin is secreted from the beta cell and increasing levels of intact proinsulin serve as an indicator of beta cell failure. In addition, increased levels of intact proinsulin were shown to predict insulin resistance with a specificity of 100 % and a sensitivity of about 50 %. On the other side, adiponectin, derived from the visceral adipose tissue, serves as a marker closely correlated to insulin sensitivity. Plasma adiponectin is a very sensitive marker of insulin resistance and might be used for the judgement of therapeutical interventions aimed to improve insulin sensitivity. In addition, both markers are predictive for the estimation of cardiovascular risk in patients with type 2 diabetes. Measurement of inflammation, by high sensitive CRP might add further information about the cardiovascular risk of a patient with type 2 diabetes.

Literatur

  • 1 Alssema M, Dekker J M, Nijpels G. et al . Proinsulin concentration is an independent predictor of all-cause and cardiovascular mortality: an 11-year follow-up of the Hoorn Study.  Diabetes Care. 2005;  28 860-865
  • 2 Arrants J. Hyperinsulinemia and cardiovascular risk.  Heart Lung. 1994;  23 118-122
  • 3 Bonora E, Targher G, Alberiche M. et al . Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity.  Diabetes Care. 2000;  23 57-63
  • 4 Boyne M S, Saudek C D. Effect of insulin therapy on macrovascular risk factors in type 2 diabetes.  Diabetes Care. 1999;  (Suppl 3) 22 C45-C53
  • 5 DeFronzo R A, Ratner R E, Han J. et al . Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes.  Diabetes Care. 2005;  28 1092-1100
  • 6 Fernandez-Real J M, Castro A, Vazquez G. et al . Adiponectin is associated with vascular function independent of insulin sensitivity.  Diabetes Care. 2004;  27 739-745
  • 7 Festa A, D’Agostino R, Howard G. et al . Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS).  Circulation. 2000;  102 42-47
  • 8 Forst T, Hohberg C, Fuellert S D. et al . Pharmacological PPARgamma stimulation in contrast to beta cell stimulation results in an improvement in adiponectin and proinsulin intact levels and reduces intima media thickness in patients with type 2 diabetes.  Horm Metab Res. 2005;  37 521-527
  • 9 Forst T, Lubben G, Hohberg C. et al . Influence of Glucose Control and Improvement of Insulin Resistance on Microvascular Blood Flow and Endothelial Function in Patients with Diabetes Mellitus Type 2.  Microcirculation. 2005;  12 543-550
  • 10 Forst T, Standl E, Hohberg C. et al . IRIS II study: The IRIS II score - Assessment of a new clinical algorithm for the classification of insulin resistance in patients with type 2 diabetes.  Diabet Med. 2004;  21 1149-1153
  • 11 Gwinup G, Elias A N. Insulin as risk factor for vascular disease.  Diabetes Care. 1990;  13 543-545
  • 12 Haffner S M, Mykkanen L, Festa A. et al . Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state.  Circulation. 2000;  101 975-980
  • 13 Han T S, Sattar N, Williams K. et al . Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study.  Diabetes Care. 2002;  25 2016-2021
  • 14 Hedblad B, Nilsson P, Janzon L. et al . Relation between insulin resistance and carotid intima-media thickness and stenosis in non-diabetic subjects. Results from a cross-sectional study in Malmo, Sweden.  Diabet Med. 2000;  17 299-307
  • 15 Hotta K, Funahashi T, Arita Y. et al . Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 16 Koenig W, Lowel H, Baumert J. et al . C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany.  Circulation. 2004;  109 1349-1353
  • 17 Kubota N, Terauchi Y, Yamauchi T. et al . Disruption of adiponectin causes insulin resistance and neointimal formation.  J Biol Chem. 2002;  277 25863-25866
  • 18 Lam K S, Xu A. Adiponectin: protection of the endothelium.  Curr Diab Rep. 2005;  5 254-259
  • 19 Matthews D R, Hosker J P, Rudenski A S. et al . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 20 Nordt T K, Bode C, Sobel B E. Stimulation in vivo of expression of intra-abdominal adipose tissue plasminogen activator inhibitor Type I by proinsulin.  Int J Obes Relat Metab Disord. 2001;  44 1121-1124
  • 21 Ouchi N, Ohishi M, Kihara S. et al . Association of hypoadiponectinemia with impaired vasoreactivity.  Hypertension. 2003;  42 231-234
  • 22 Pfutzner A, Kunt T, Hohberg C. et al . Fasting intact proinsulin is a highly specific predictor of insulin resistance in type 2 diabetes.  Diabetes Care. 2004;  27 682-687
  • 23 Pfutzner A, Standl E, Hohberg C. et al . IRIS II study: intact proinsulin is confirmed as a highly specific indicator for insulin resistance in a large cross-sectional study design.  Diabetes Technol Ther. 2005;  7 478-486
  • 24 Pickup J C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes.  Diabetes Care. 2004;  27 813-823
  • 25 Pischon T, Girman C J, Hotamisligil G S. et al . Plasma adiponectin levels and risk of myocardial infarction in men.  JAMA. 2004;  291 1730-1737
  • 26 Pyorala K, Savolainen E, Kaukola S. et al . Plasma insulin as coronary heart disease risk factor: relationship to other risk factors and predictive value during 9 1/2-year follow-up of the Helsinki Policemen Study population.  Acta Med Scand Suppl. 1985;  701 38-52
  • 27 Rask-Madsen C, Ihlemann N, Krarup T. et al . Insulin therapy improves insulin-stimulated endothelial function in patients with type 2 diabetes and ischemic heart disease.  Diabetes. 2001;  50 2611-2618
  • 28 Reaven G M. Insulin and hypertension.  Clin Exp Hypertens A. 1990;  12 803-816
  • 29 Reaven G M, Chen J D, Hollenbeck C B. et al . Plasma insulin, c-peptide and proinsulin concentration in obese and non obese individuals with varying degrees of glucose tolerance.  J Clin Endocrinol Metab. 1993;  76 44-48
  • 30 Ridker P M, Hennekens C H, Buring J E. et al . C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.  N Engl J Med. 2000;  342 836-843
  • 31 Ridker P M, Rifai N, Rose L. et al . Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events.  N Engl J Med. 2002;  347 1557-1565
  • 32 Rothenbacher D, Brenner H, Marz W. et al . Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers.  Eur Heart J. 2005;  26 1640-1646
  • 33 Schneider D J, Nordt T K, Sobel B E. Stimulation by proinsulin of expression of plasminogen activator inhibitor type-I in endothelial cells.  Diabetes. 1992;  41 890-895
  • 34 Schondorf T, Maiworm A, Emmison N. et al . Biological background and role of adiponectin as marker for insulin resistance and cardiovascular risk.  Clin Lab. 2005;  51 489-494
  • 35 Schulze M B, Shai I, Rimm E B. et al . Adiponectin and future coronary heart disease events among men with type 2 diabetes.  Diabetes. 2005;  54 534-539
  • 36 Shimabukuro M, Higa N, Asahi T. et al . Hypoadiponectinemia is closely linked to endothelial dysfunction in man.  J Clin Endocrinol Metab. 2003;  88 3236-3240
  • 37 Simpson S H, Majumdar S R, Tsuyuki R T. et al . Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study.  CMAJ. 2006;  174 169-174
  • 38 Tice J A, Browner W, Tracy R P. et al . The relation of C-reactive protein levels to total and cardiovascular mortality in older US women.  Am J Med. 2003;  114 199-205
  • 39 Wallace T M, Levy J C, Matthews D R. Use and abuse of HOMA modeling.  Diabetes Care. 2004;  27 1487-1495
  • 40 Wallander M, Bartnik M, Efendic S. et al . Beta cell dysfunction in patients with acute myocardial infarction but without previously known type 2 diabetes: a report from the GAMI study.  Int J Obes Relat Metab Disord. 2005;  48 2229-2235
  • 41 Weyer C, Funahashi T, Tanaka S. et al . Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 42 Yamauchi T, Kamon J, Waki H. et al . The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2001;  7 941-946
  • 43 Yudkin J S, May M, Elwood P. et al . Concentrations of proinsulin like molecules predict coronary heart disease risk independently of insulin: prospective data from the Caerphilly Study.  Diabetologia. 2002;  45 327-336
  • 44 Zethelius B, Lithell H, Hales C N. et al . Insulin sensitivity, proinsulin and insulin as predictors of coronary heart disease. A population-based 10-year, follow-up study in 70-year old men using the euglycaemic insulin clamp.  Int J Obes Relat Metab Disord. 2005;  48 862-867

Prof. Dr. med. Thomas Forst

Institut für klinische Forschung und Entwicklung

Parcusstraße 8

55116 Mainz

Email: thomasf@ikfe.de

    >