Abstract
Kinetic resolution is observed in the oxidation of racemic alkyl aryl sulfoxides using
a combination of VO(acac)2 and ligand 1 in chloroform at 0 °C, conditions previously described for asymmetric oxidation of
prochiral sulfides. Kinetic resolution is also observed in toluene as the solvent,
although higher temperatures are required.
Key words
asymmetric catalysis - oxidation - kinetic resolution - sulfoxides - Schiff bases
References and Notes
<A NAME="RY01006ST-1">1 </A>
Fernández I.
Khiar N.
Chem. Rev.
2003,
103:
3651
<A NAME="RY01006ST-2">2 </A>
Carreño MC.
Chem. Rev.
1995,
95:
1717
<A NAME="RY01006ST-3">3 </A>
Pellissier H.
Tetrahedron
2006,
62:
5559
<A NAME="RY01006ST-4">4 </A>
Legros J.
Dehli JR.
Bolm C.
Adv. Synth. Catal.
2005,
347:
19
<A NAME="RY01006ST-5">5 </A>
Davis FA.
Reddy RT.
Han W.
Carroll PJ.
J. Am. Chem. Soc.
1992,
114:
1428
<A NAME="RY01006ST-6">6 </A>
Lattanzi A.
Piccirillo S.
Scettri A.
Eur. J. Org. Chem.
2006,
713
<A NAME="RY01006ST-7">7 </A>
Lattanzi A.
Scettri A.
J. Organomet. Chem.
2006,
691:
2072
<A NAME="RY01006ST-8">8 </A>
Mata EG.
Phosphorus, Sulfur Silicon Relat. Elem.
1996,
117:
231
<A NAME="RY01006ST-9">9 </A>
Boyd DR.
Sharma ND.
Haughey SA.
Kennedy MA.
McMurray BT.
Sheldrake GN.
Allen CCR.
Dalton H.
Sproule K.
J. Chem. Soc., Perkin Trans. 1
1998,
1929
<A NAME="RY01006ST-10">10 </A>
Kagan HB.
Luukas TO.
Transition Metals for Organic Synthesis
2nd ed., Vol. 2:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
p.479
<A NAME="RY01006ST-11">11 </A>
Kaczorowska K.
Kolarska Z.
Mitka K.
Kowalski P.
Tetrahedron
2005,
61:
8315
<A NAME="RY01006ST-12">12 </A>
Volcho KP.
Salakhutdinov NF.
Tolstikov AG.
Russ. J. Org. Chem.
2003,
39:
1537
<A NAME="RY01006ST-13">13 </A>
Pitchen P.
Duñach E.
Deshmukh MN.
Kagan HB.
J. Am. Chem. Soc.
1984,
106:
8188
<A NAME="RY01006ST-14">14 </A>
Pitchen P.
Kagan HB.
Tetrahedron Lett.
1984,
25:
1049
<A NAME="RY01006ST-15">15 </A>
Di Furia F.
Modena G.
Seraglia R.
Synthesis
1984,
325
<A NAME="RY01006ST-16">16 </A>
Ramón DJ.
Yus M.
Chem. Rev.
2006,
106:
2126
<A NAME="RY01006ST-17">17 </A>
Palucki M.
Hanson P.
Jacobsen EN.
Tetrahedron Lett.
1992,
33:
7111
<A NAME="RY01006ST-18">18 </A>
Noda K.
Hosoya N.
Irie R.
Yamashita Y.
Katsuki T.
Tetrahedron
1994,
50:
9609
<A NAME="RY01006ST-19">19 </A>
Legros J.
Bolm C.
Chem. Eur. J.
2005,
11:
1086
<A NAME="RY01006ST-20">20 </A>
Basak A.
Barlan AU.
Yamamoto H.
Tetrahedron: Asymmetry
2006,
17:
508
<A NAME="RY01006ST-21">21 </A>
Bolm C.
Coord. Chem. Rev.
2003,
237:
245
<A NAME="RY01006ST-22">22 </A>
Sun J.
Zhu C.
Dai Z.
Yang M.
Pan Y.
Hu H.
J. Org. Chem.
2004,
69:
8500
<A NAME="RY01006ST-23">23 </A>
Bolm C.
Bienewald F.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2640
<A NAME="RY01006ST-24">24 </A>
Bolm C.
Schlingloff G.
Bienewald F.
J. Mol. Catal. A: Chem.
1997,
117:
347
<A NAME="RY01006ST-25">25 </A>
Bolm C.
Bienewald F.
Synlett
1998,
1327
<A NAME="RY01006ST-26">26 </A>
Pelotier B.
Anson MS.
Campbell IB.
Macdonald SJF.
Priem G.
Jackson RFW.
Synlett
2002,
1055
<A NAME="RY01006ST-27">27 </A>
Hinch M.
Jacques O.
Drago C.
Caggiano L.
Jackson RFW.
Dexter C.
Anson MS.
Macdonald SJF.
J. Mol. Catal. A: Chem.
2006,
251:
123
<A NAME="RY01006ST-28">28 </A>
Drago C.
Caggiano L.
Jackson RFW.
Angew. Chem. Int. Ed.
2005,
44:
7221
<A NAME="RY01006ST-29">29 </A>
Thakur VV.
Sudalai A.
Tetrahedron: Asymmetry
2003,
14:
407
<A NAME="RY01006ST-30">30 </A>
Adam W.
Korb MN.
Roschmann KJ.
Saha-Möller CR.
J. Org. Chem.
1998,
63:
3423
<A NAME="RY01006ST-31">31 </A>
Komatsu N.
Hashizume M.
Sugita T.
Uemura S.
J. Org. Chem.
1993,
58:
4529
<A NAME="RY01006ST-32">32 </A>
Jia X.
Li X.
Xu L.
Li Y.
Shi Q.
Au-Yeung TTL.
Yip CW.
Yao X.
Chan ASC.
Adv. Synth. Catal.
2004,
346:
723
<A NAME="RY01006ST-33">33 </A>
Zeng Q.
Wang H.
Wang T.
Cai Y.
Weng W.
Zhao Y.
Adv. Synth. Catal.
2005,
347:
1933
<A NAME="RY01006ST-34">34 </A>
Kelly P.
Lawrence SE.
Maguire AR.
Synlett
2006,
1569
<A NAME="RY01006ST-35">35 </A>
Kagan HB.
Fiaud JC.
Top. Stereochem.
1988,
18:
249
<A NAME="RY01006ST-36">36 </A>
Alonso DA.
Nájera C.
Varea M.
Tetrahedron Lett.
2002,
43:
3459
<A NAME="RY01006ST-37">37 </A>
The ratios of response factors for each sulfoxide and sulfone at 252 nm were determined
as follows: R = Me; Ar = Ph (9.9), p -BrC6 H4 (7.5), p -ClC6 H4 (16.5), p -Tol (12.7), p -MeOC6 H4 (1.8), p -NO2 C6 H4 (0.56), 2-Naphth (4.9): R = Et, Ar = Ph (10.0).
<A NAME="RY01006ST-38">38 </A>
Davies DM.
Deary ME.
J. Chem. Soc., Perkin Trans. 2
1995,
1287
<A NAME="RY01006ST-39">39 </A>
Rosini C.
Donnoli MI.
Superchi S.
Chem. Eur. J.
2001,
7:
72
<A NAME="RY01006ST-40">40 </A>
HPLC-grade chloroform was purchased from Fisher Scientific, stabilized with amylene
(100 ppm). Since CHCl3 can also be stabilized with a small amount of alcohols, and may contain HCl, we investigated
the effects of these additives in the kinetic resolution reaction. Using dried CHCl3 gave very similar results to those observed using either unpurified CHCl3 or dried CHCl3 with 1 mol% of 2 M HCl. Interestingly, however, the addition of 0.5 mol% of i -PrOH gave moderate conversion (35%) to the sulfone and racemic sulfoxide.
<A NAME="RY01006ST-41">41 </A>
Hellweg S.
Fischer U.
Scheringer M.
Hungerbühler K.
Green Chem.
2004,
6:
418
<A NAME="RY01006ST-42">42 </A>
Drago C.
PhD Thesis
University of Sheffield;
UK:
2005.
<A NAME="RY01006ST-43">43 </A>
In our experience, use of 23 mL of solvent per mmol of substrate as originally reported
results in slow reactions and much poorer yields, a problem that can be overcome by
drastically reducing the amount of solvent. Alonso and Nájera have made similar observations
when conducting larger-scale reactions: Alonso D. A. and Nájera, C., personal communication
from Alonso, D. A., August 2006.