Abstract
This account recounts how a project, initially designed to generate folded peptidyl-DNA
motifs for cellular delivery, led to the discovery of acylamido substituents that
increase affinity for target strands and improve mismatch discrimination of hybridization
probes. Our syntheses of oligonucleotides with acylamido groups involve phosphoramidites
of aminodideoxynucleosides as intermediates and amide-forming reactions on solid
support, performed after assembly of the DNA chain. The richly functionalized intermediates
invite a host of side reactions. Strategies to suppress these side reactions are discussed.
In our quest for oligonucleotides with improved biophysical and biological properties
we used late, on-support combinatorial couplings to generate small chemical libraries
subjected to mass-spectrometrically monitored selection experiments. The combinatorial
approach was used to identify acylamido substituents at the termini that act as caps
for DNA duplexes. Though truly bioavailable DNA derivatives were not found, oligonucleotides
with a short dendrimer at the 5′-terminus and a blocked 3′-terminus were shown to
possess improved enzymatic stability, while retaining high affinity for target strands.
The on-support synthesis of acylamido DNA gives access to structurally diverse molecules
with potential in biomedical applications, including the use in high-fidelity DNA
microarrays.
1 Introduction
2 Synthesis of Acylamido-DNA and the Stability of Its Duplexes
2.1 Design and General Synthetic Aspects
2.2 Common Side Reactions
2.3 Combinatorial Syntheses
2.4 Oligodeoxynucleotide-Peptide Hybrids
2.5 Dendrimer-DNA Hybrids with Increased Nuclease Resistance
3 Oligonucleotides with Improved Duplex-Forming Properties
3.1 General Considerations
3.2 Oligodeoxynucleotides with Directly Linked Acylamido Substituents
3.3 Acylamido Caps with Linkers that Can Be Introduced as Phosphoramidites
3.4 Acylamido Substituents in the Interior of DNA Strands
4 Outlook
Abbreviations: Alloc, allyloxycarbonyl; cpg, controlled pore glass; dA, 2′-deoxyadenosine residue;
dbf, di-N -butylformamidine; dC, 2′-deoxycytidine residue; dG, 2′-deoxyguanosine residue; DIEA,
diisopropylethylamine; dT, thymidine residue; DMT, dimethoxytrityl; HBTU, 2-(1H -benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; HOBT, hydroxybenzotriazole;
MMT, monomethoxy trityl; SMOSE, spectrometrically monitored selection experiment.
Key words
DNA - nucleosides - nucleobases - acylations - amides - peptides
References
<A NAME="RA42606ST-1A">1a </A>
Michelson M.
Todd AR.
J. Chem. Soc.
1955,
2632
<A NAME="RA42606ST-1B">1b </A>
Gilham PT.
Khorana HG.
J. Am. Chem. Soc.
1958,
80:
6212
<A NAME="RA42606ST-2A">2a </A>
Letsinger RL.
Lunsford WB.
J. Am. Chem. Soc.
1976,
98:
3655
<A NAME="RA42606ST-2B">2b </A>
McBride LJ.
Caruthers MH.
Tetrahedron Lett.
1983,
24:
245
<A NAME="RA42606ST-3A">3a </A>
Hayakawa Y.
Kataoka M.
J. Am. Chem. Soc.
1998,
120:
12395
<A NAME="RA42606ST-3B">3b </A>
Sekine M.
Ohkubo A.
Seio K.
J. Org. Chem.
2003,
68:
5478
<A NAME="RA42606ST-4">4 </A>
Westheimer FH.
Science
1987,
235:
1173
<A NAME="RA42606ST-5">5 </A>
Beier M.
Reck F.
Wagner T.
Krishnamurthy R.
Eschenmoser A.
Science
1999,
283:
699
<A NAME="RA42606ST-6">6 </A>
Stephenson ML.
Zamecnik PC.
Proc. Natl. Acad. Sci. U.S.A.
1978,
75:
285
For example, see:
<A NAME="RA42606ST-7A">7a </A>
Stein CA.
Cheng Y.-C.
Science
1993,
261:
1004
<A NAME="RA42606ST-7B">7b </A>
DeMesmaeker A.
Haener R.
Martin P.
Moser HE.
Acc. Chem. Res.
1995,
28:
366
<A NAME="RA42606ST-7C">7c </A>
Agrawal S.
Biochim. Biophys. Acta
1999,
1489:
53
<A NAME="RA42606ST-8">8 </A>
Richert C.
Roughton AL.
Benner SA.
J. Am. Chem. Soc.
1996,
118:
4518
<A NAME="RA42606ST-9A">9a </A>
Egholm M.
Burchardt O.
Nielsen PE.
Berg RH.
J. Am. Chem. Soc.
1992,
114:
1895
<A NAME="RA42606ST-9B">9b </A>
Uhlmann E.
Peyman A.
Breipohl G.
Will DW.
Angew. Chem. Int. Ed.
1998,
37:
2797
<A NAME="RA42606ST-10A">10a </A>
Koshkin AA.
Nielsen P.
Meldgaard M.
Rajwanshi VK.
Singh SK.
Wengel J.
J. Am. Chem. Soc.
1998,
120:
13252
<A NAME="RA42606ST-10B">10b </A>
Obika S.
Nanbu D.
Hari Y.
Morio K.-I.
In Y.
Ishida T.
Imanishi T.
Tetrahedron Lett.
1997,
38:
8735
<A NAME="RA42606ST-11A">11a </A>
Chen JK.
Schultz RG.
Lloyd DH.
Gryaznov SM.
Nucleic Acids Res.
1995,
23:
2661
<A NAME="RA42606ST-11B">11b </A>
Gryaznov SM.
Lloyd DH.
Chen JK.
Schultz RG.
DeDionisio LA.
Ratmeyer L.
Wilson WD.
Proc. Natl. Acad. Sci. U.S.A.
1995,
92:
5798
<A NAME="RA42606ST-11C">11c </A>
Mignet N.
Gryaznov SM.
Nucleic Acids Res.
1998,
26:
431
<A NAME="RA42606ST-12A">12a </A>
Linkletter BA.
Szabo IE.
Bruice TC.
J. Am. Chem. Soc.
1999,
121:
3888
<A NAME="RA42606ST-12B">12b </A>
Linkletter BA.
Szabo IE.
Bruice TC.
Nucleic Acids Res.
2001,
29:
2370
<A NAME="RA42606ST-13">13 </A>
Taubes G.
Science
2002,
298:
2116
<A NAME="RA42606ST-14A">14a </A>
Ambros V.
Cell
2001,
107:
823
<A NAME="RA42606ST-14B">14b </A>
Carrington JC.
Ambros V.
Science
2003,
301:
336
<A NAME="RA42606ST-14C">14c </A>
Liu C.-G.
Calin GA.
Meloon B.
Gamliel N.
Sevignani C.
Ferracin M.
Dumitru CD.
Shimizu M.
Zupo S.
Dono M.
Alder H.
Bullrich F.
Negrini M.
Croce CM.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
9740
<A NAME="RA42606ST-14D">14d </A>
Lim LP.
Lau NC.
Garrett-Engele P.
Grimson A.
Schelter JM.
Castle J.
Bartel DP.
Linsley PS.
Johnson JM.
Nature
2005,
433:
769
<A NAME="RA42606ST-14E">14e </A>
Lecellier C.-H.
Dunoyer P.
Arar K.
Lehmann-Che J.
Eyquem S.
Himber C.
Saib A.
Voinnet O.
Science
2005,
308:
557
For example, see:
<A NAME="RA42606ST-15A">15a </A>
Soutschek J.
Akinc A.
Bramlage B.
Charisse K.
Constien R.
Donoghue M.
Elbashir S.
Geick A.
Hadwiger P.
Harborth J.
John M.
Kesavan V.
Lavine G.
Pandey RK.
Racie T.
Rajeev KG.
Rohl I.
Toudjarska I.
Wang G.
Wuschko S.
Bumcrot D.
Koteliansky V.
Limmer S.
Manoharan M.
Vornlocher HP.
Nature
2004,
432:
173
<A NAME="RA42606ST-15B">15b </A>
Krützfeldt J.
Rajewsky N.
Braich R.
Rajeev KG.
Tuschl T.
Manoharan M.
Stoffel M.
Nature
2005,
438:
685
<A NAME="RA42606ST-16">16 </A>
Kottysch T.
Ahlborn C.
Brotzel F.
Richert C.
Chem. Eur. J.
2004,
10:
4017
<A NAME="RA42606ST-17">17 </A>
Grünefeld P.
Richert C.
J. Org. Chem.
2004,
69:
7543
<A NAME="RA42606ST-18">18 </A>
Narayanan S.
Gall J.
Richert C.
Nucleic Acids Res.
2004,
32:
2901
<A NAME="RA42606ST-19">19 </A>
Mokhir AA.
Tetzlaff CN.
Herzberger S.
Mosbacher A.
Richert C.
J. Comb. Chem.
2001,
3:
374
<A NAME="RA42606ST-20">20 </A>
Rojas Stütz JA.
Richert C.
Tetrahedron Lett.
2004,
45:
509
<A NAME="RA42606ST-21">21 </A>
Tetzlaff CN.
Schwope I.
Bleczinski CF.
Steinberg JA.
Richert C.
Tetrahedron Lett.
1998,
39:
4215
<A NAME="RA42606ST-22">22 </A>
Mag M.
Engels JW.
Nucleic Acids Res.
1989,
17:
5973
<A NAME="RA42606ST-23">23 </A>
Bannwarth W.
Helv. Chim. Acta
1988,
71:
1517
<A NAME="RA42606ST-24A">24a </A>
Hendrix C.
Devreese B.
Rozenski J.
van Aerschot A.
De Bruyn A.
van Beeumen J.
Herdewijn P.
Nucleic Acids Res.
1995,
23:
51
<A NAME="RA42606ST-24B">24b </A>
Cohen SB.
Cech TR.
J. Am. Chem. Soc.
1997,
119:
6259
<A NAME="RA42606ST-24C">24c </A>
Yamana K.
Mitsui T.
Nakano H.
Tetrahedron
1999,
55:
9143
<A NAME="RA42606ST-24D">24d </A>
Milne L.
Perrin DM.
Sigman DS.
Proc. Natl. Acad. Sci. U.S.A.
2000,
97:
3136
<A NAME="RA42606ST-25A">25a </A>
Verheyden JPH.
Wagner D.
Moffatt JG.
J. Org. Chem.
1971,
36:
250
<A NAME="RA42606ST-25B">25b </A>
McGee DPC.
Vargeese C.
Zhai Y.
Kirschenheuter GP.
Settle A.
Siedem CR.
Pieken W.
Nucleosides Nucleotides
1995,
14:
1329
<A NAME="RA42606ST-25C">25c </A>
McGee DPC.
Sebesta DP.
O’Rourke SS.
Martinez RL.
Jung ME.
Pieken W.
Tetrahedron Lett.
1996,
37:
1995
<A NAME="RA42606ST-26A">26a </A>
McGee DP.
Vaughn-Settle A.
Vargeese C.
Zhai Y.
J. Org. Chem.
1996,
61:
781
<A NAME="RA42606ST-26B">26b </A>
Höbartner C.
Micura R.
J. Am. Chem. Soc.
2004,
126:
1141
<A NAME="RA42606ST-27">27 </A>
Kryatova OP.
Connors WH.
Bleczinski CF.
Mokhir AA.
Richert C.
Org. Lett.
2001,
3:
987
<A NAME="RA42606ST-28">28 </A>
Connors WH.
Narayanan S.
Kryatova OP.
Richert C.
Org. Lett.
2003,
5:
247
<A NAME="RA42606ST-29">29 </A>
Al-Rawy S.
Ahlborn C.
Richert C.
Org. Lett.
2005,
7:
1569
<A NAME="RA42606ST-30">30 </A>
Dombi KL.
Griesang N.
Richert C.
Synthesis
2002,
816
<A NAME="RA42606ST-31">31 </A>
Printz M., Richert C. J. Comb. Chem. , accepted.
<A NAME="RA42606ST-32">32 </A> Known to also exist as guanidinium salts, see:
Carpino LA.
Imazumi H.
El-Faham A.
Ferrer FJ.
Zhang C.
Lee Y.
Foxman BM.
Henklein P.
Hanay C.
Mügge C.
Wenschuh H.
Klose J.
Beyermann M.
Bienert M.
Angew. Chem. Int. Ed.
2002,
41:
441 ; Angew. Chem. 2002 , 114 , 458
<A NAME="RA42606ST-33">33 </A>
Schwope I.
Bleczinski CF.
Richert C.
J. Org. Chem.
1999,
64:
4749
<A NAME="RA42606ST-34">34 </A>
Zhu Q.
Delaney MO.
Greenberg MM.
Bioorg. Med. Chem. Lett.
2001,
11:
1105
<A NAME="RA42606ST-35">35 </A>
Palom Y.
Grandas A.
Pedroso E.
Nucleosides Nucleotides
1998,
17:
1177
<A NAME="RA42606ST-36">36 </A> See also:
Uhlmann E.
Pfleiderer W.
Tetrahedron Lett.
1980,
21:
1181
<A NAME="RA42606ST-37">37 </A>
Stengele KP.
Pfleiderer W.
Tetrahedron Lett.
1990,
31:
2549
<A NAME="RA42606ST-38">38 </A>
Brown T.
Pritchard CE.
Turner G.
Salisbury SA.
J. Chem. Soc., Chem. Commun.
1989,
14:
891
<A NAME="RA42606ST-39A">39a </A>
Ho WC.
Steinbeck C.
Richert C.
Biochemistry
1999,
38:
12597
<A NAME="RA42606ST-39B">39b </A>
Tuma J.
Connors WH.
Stitelman DH.
Richert C.
J. Am. Chem. Soc.
2002,
124:
4236
<A NAME="RA42606ST-39C">39c </A>
Tuma J.
Paulini R.
Rojas Stütz JA.
Richert C.
Biochemistry
2004,
43:
15680
<A NAME="RA42606ST-39D">39d </A>
Siegmund K.
Maheshwary S.
Narayanan S.
Connors W.
Riedrich M.
Printz M.
Richert C.
Nucleic Acids Res.
2005,
33:
4838
<A NAME="RA42606ST-40">40 </A>
Peyrottes S.
Mestre B.
Burlina F.
Gait MJ.
Tetrahedron
1998,
54:
12513
<A NAME="RA42606ST-41">41 </A>
Guzaev AP.
Manoharan M.
J. Org. Chem.
2001,
66:
1798
<A NAME="RA42606ST-42">42 </A>
Kanavarioti A.
Stronach MW.
Ketner RJ.
Hurley TB.
J. Org. Chem.
1995,
60:
632
<A NAME="RA42606ST-43">43 </A>
Dogan Z.
Paulini R.
Rojas Stütz JA.
Narayanan S.
Richert C.
J. Am. Chem. Soc.
2004,
126:
4762
<A NAME="RA42606ST-44">44 </A>
Sambrook J.
Fritsch EF.
Maniatis T.
Molecular cloning: a laboratory manual
2nd ed.:
Cold Spring Harbour Laboratory Press;
Cold Spring Harbour, New York:
1989.
<A NAME="RA42606ST-45">45 </A>
Berlin K.
Jain RK.
Simon MD.
Richert C.
J. Org. Chem.
1998,
63:
1527
<A NAME="RA42606ST-46">46 </A>
Berlin K.
Jain RK.
Tetzlaff C.
Steinbeck C.
Richert C.
Chem. Biol.
1997,
4:
63
<A NAME="RA42606ST-47">47 </A>
Altman RK.
Schwope I.
Sarracino DA.
Tetzlaff CN.
Bleczinski CF.
Richert C.
J. Comb. Chem.
1999,
1:
493
<A NAME="RA42606ST-48">48 </A>
Harrison JG.
Balasubramanian S.
Nucleic Acids Res.
1998,
26:
3136
<A NAME="RA42606ST-49">49 </A>
Dombi KL.
Steiner UE.
Richert C.
J. Comb. Chem.
2003,
5:
45
<A NAME="RA42606ST-50">50 </A>
Ernst T.
Richert C.
Synlett
2005,
411
<A NAME="RA42606ST-51">51 </A>
Spies S., Röttele H., Richert C. research project for high-school students, Karlsruhe,
2005 ; unpublished results.
<A NAME="RA42606ST-52A">52a </A>
Kuyl-Yeheskiely E.
Tromp CM.
Schaeffer AH.
van der Marel GA.
Van Boom JH.
Nucleic Acids Res.
1987,
15:
1807
<A NAME="RA42606ST-52B">52b </A>
Kuyl-Yeheskiely E.
Tromp CM.
Lefeber AWM.
van der Marel GA.
van Boom JH.
Tetrahedron
1988,
44:
6515
<A NAME="RA42606ST-52C">52c </A>
Kuyl-Yeheskiely E.
Dreef-Tromp CM.
Geluk A.
van der Marel GA.
van Boom JH.
Nucleic Acids Res.
1989,
17:
2897
<A NAME="RA42606ST-52D">52d </A>
Dreef-Tromp CM.
van Dam EMA.
van den Elst H.
van der Marel GA.
van Boom JH.
Nucleic Acids Res.
1990,
18:
6491
<A NAME="RA42606ST-52E">52e </A>
Dreef-Tromp CM.
van der Maarel JCM.
van den Elst H.
van der Marel GA.
van Boom JH.
Nucleic Acids Res.
1992,
20:
4015
<A NAME="RA42606ST-53A">53a </A>
Eritja R.
Pons A.
Escarceller M.
Giralt E.
Albericio F.
Tetrahedron
1991,
47:
4113
<A NAME="RA42606ST-53B">53b </A>
Robles J.
Pedroso E.
Grandas A.
Tetrahedron Lett.
1991,
32:
4389
<A NAME="RA42606ST-53C">53c </A>
De la Torre BG.
Avino A.
Tarrason G.
Piulats J.
Albericio F.
Eritja R.
Tetrahedron Lett.
1994,
35:
2733
<A NAME="RA42606ST-53D">53d </A>
Robles J.
Maseda M.
Beltrán M.
Concernau M.
Pedroso E.
Grandas A.
Bioconjugate Chem.
1997,
8:
785
<A NAME="RA42606ST-53E">53e </A>
Beltran M.
Maseda M.
Perez Y.
Robles J.
Pedroso E.
Grandas A.
Nucleosides Nucleotides
1997,
16:
1487
<A NAME="RA42606ST-53F">53f </A>
Beltrán M.
Pedroso E.
Grandas A.
Tetrahedron Lett.
1998,
39:
4115
Selected publications:
<A NAME="RA42606ST-54A">54a </A>
Bergmann F.
Bannwarth W.
Tetrahedron Lett.
1995,
36:
1839
<A NAME="RA42606ST-54B">54b </A>
Guibourdenche C.
Seebach D.
Helv. Chim. Acta
1997,
80:
1
<A NAME="RA42606ST-54C">54c </A>
Oliver JS.
Oyelere AK.
Tetrahedron Lett.
1997,
38:
4005
<A NAME="RA42606ST-54D">54d </A>
Vivès E.
Lebleu B.
Tetrahedron Lett.
1997,
38:
1183
<A NAME="RA42606ST-54E">54e </A>
Waldmann H.
Gabold S.
Chem. Commun.
1997,
19:
1861
<A NAME="RA42606ST-55">55 </A>
Juodka BA.
Nucleosides Nucleotides
1984,
3:
445
For example, see:
<A NAME="RA42606ST-56A">56a </A>
Haralambidis J.
Duncan L.
Tregear GW.
Tetrahedron Lett.
1987,
28:
5199
<A NAME="RA42606ST-56B">56b </A>
Hotoda H.
Ueno Y.
Sekine M.
Hata T.
Tetrahedron Lett.
1989,
30:
2117
<A NAME="RA42606ST-56C">56c </A>
Juby CD.
Richardson CD.
Brousseau R.
Tetrahedron Lett.
1991,
32:
879
<A NAME="RA42606ST-56D">56d </A>
Soukchareun S.
Tregear GW.
Haralambidis J.
Bioconjugate Chem.
1995,
6:
43
<A NAME="RA42606ST-56E">56e </A>
Truffert JC.
Asseline U.
Brack A.
Thuong NT.
Tetrahedron
1996,
52:
3005
<A NAME="RA42606ST-56F">56f </A>
Jensen ON.
Kulkarni S.
Aldrich JV.
Barofsky DF.
Nucleic Acids Res.
1996,
24:
3866
Selected references:
<A NAME="RA42606ST-57A">57a </A>
Stetsenko DA.
Gait MJ.
J. Org. Chem.
2000,
65:
4900
<A NAME="RA42606ST-57B">57b </A>
Stetsenko DA.
Gait MJ.
Bioconjugate Chem.
2001,
12:
576
<A NAME="RA42606ST-57C">57c </A>
Stetsenko DA.
Malakhov AD.
Gait MJ.
Org. Lett.
2002,
4:
3259
<A NAME="RA42606ST-57D">57d </A>
Zatsepin TS.
Stetsenko DA.
Arzumanov AA.
Romanova EA.
Gait MJ.
Oretskaya TS.
Bioconjugate Chem.
2002,
13:
822
<A NAME="RA42606ST-57E">57e </A>
Stetsenko DA.
Malakhov AD.
Gait MJ.
Nucleosides Nucleotides Nucleic Acids
2003,
22:
1379
<A NAME="RA42606ST-57F">57f </A>
Zatsepin TS.
Stetsenko DA.
Gait MJ.
Oretskaya TS.
Tetrahedron Lett.
2005,
46:
3191
<A NAME="RA42606ST-58A">58a </A>
Zhu T.
Wei Z.
Tung CH.
Dickerhof WA.
Breslauer KJ.
Georgopoulos DE.
Leibowitz MJ.
Stein S.
Antisense Res. Dev.
1993,
3:
265
<A NAME="RA42606ST-58B">58b </A>
Corey DR.
J. Am. Chem. Soc.
1995,
117:
9373
<A NAME="RA42606ST-58C">58c </A>
Truffert JC.
Asseline U.
Thuong NT.
Brack A.
Protein Pept. Lett.
1995,
2:
419
<A NAME="RA42606ST-58D">58d </A>
Wei Z.
Tung C.-H.
Zhu T.
Dickerhof WA.
Breslauer KJ.
Geogopoulos DE.
Leibowitz MJ.
Stein S.
Nucleic Acids Res.
1996,
24:
655
<A NAME="RA42606ST-59">59 </A>
Uhlmann E.
Peyman A.
Chem. Rev.
1990,
90:
544
<A NAME="RA42606ST-60A">60a </A>
Weiler S.
Ariatti M.
Hawtrey AO.
Med. Sci. Res.
1993,
21:
827
<A NAME="RA42606ST-60B">60b </A>
Rajur SB.
Roth CM.
Morgan JR.
Yarmush ML.
Bioconjugate Chem.
1997,
8:
935
<A NAME="RA42606ST-60C">60c </A>
Manoharan M.
Tivel KL.
Condon TP.
Andrade LK.
Barber-Peoch I.
Inamati G.
Shah S.
Mohan V.
Graham MJ.
Bennett CF.
Crooke ST.
Cook PD.
Nucleosides Nucleotides
1997,
16:
1129
<A NAME="RA42606ST-61">61 </A>
Robles J.
Pedroso E.
Grandas A.
J. Org. Chem.
1995,
60:
4856
See e.g.
<A NAME="RA42606ST-62A">62a </A>
Forget D.
Boturyn D.
Defrancq E.
Lhomme J.
Dumy P.
Chem. Eur. J.
2001,
7:
3976
<A NAME="RA42606ST-62B">62b </A>
Singh Y.
Defrancq E.
Dumy P.
J. Org. Chem.
2004,
69:
8544
<A NAME="RA42606ST-63A">63a </A>
Arar K.
Aubertin A.-M.
Roche A.-C.
Monsigny M.
Mayer R.
Bioconjugate Chem.
1995,
6:
573
<A NAME="RA42606ST-63B">63b </A>
McMinn DL.
Greenberg MM.
Bioorg. Med. Chem. Lett.
1999,
9:
547-550
<A NAME="RA42606ST-64">64 </A>
Tung CH.
Rudolph MJ.
Stein S.
Bioconjugate Chem.
1991,
2:
464
<A NAME="RA42606ST-65">65 </A>
Bruick RC.
Dawson PE.
Kent SBH.
Usman N.
Joyce GF.
Chem. Biol.
1996,
3:
49
<A NAME="RA42606ST-66">66 </A>
Ueno Y.
Saito R.
Hata T.
Nucleic Acids Res.
1993,
21:
4451
<A NAME="RA42606ST-67">67 </A>
Kuyl-Yeheskiely E.
Van der Klein PAM.
Visser GM.
Van der Marel GA.
Van Boom JH.
Recl. Trav. Chim. Pays-Bas
1986,
105:
69
<A NAME="RA42606ST-68">68 </A>
Sarracino DA.
Steinberg JA.
Vergo MT.
Woodworth GF.
Tetzlaff CN.
Richert C.
Bioorg. Med. Chem. Lett.
1998,
8:
2511
<A NAME="RA42606ST-69">69 </A> For a structural proposal involving double-stranded DNA, see:
Yang C.-C.
Nash HA.
Cell
1989,
57:
869
<A NAME="RA42606ST-70">70 </A>
Reed MW.
Fraga D.
Schwartz DE.
Scholler J.
Hinrichsen RD.
Bioconjugate Chem.
1995,
6:
101
<A NAME="RA42606ST-71">71 </A>
Tetzlaff C. N., Ph.D. thesis, Tufts University, 2001 .
<A NAME="RA42606ST-72">72 </A>
Suzuki M.
EMBO J.
1989,
8:
797-804
<A NAME="RA42606ST-73">73 </A>
Suzuki M.
Gerstein M.
Johnson T.
Protein Eng.
1993,
6:
565-574
<A NAME="RA42606ST-74">74 </A>
Bleczinski CF.
Richert C.
Org. Lett.
2000,
2:
1697
<A NAME="RA42606ST-75">75 </A>
Gait MJ.
Cell. Mol. Life Sci.
2003,
60:
1
<A NAME="RA42606ST-76A">76a </A>
Fodor SPA.
Read JL.
Pirrung MC.
Stryer L.
Lu AT.
Solas D.
Science
1991,
251:
767
<A NAME="RA42606ST-76B">76b </A>
Southern EM.
Mir K.
Shchepinov M.
Nat. Genet.
1999,
21:
5
<A NAME="RA42606ST-76C">76c </A>
Lockhardt DJ.
Winzeler EA.
Nature
2000,
405:
827
<A NAME="RA42606ST-76D">76d </A>
Pirrung MC.
Angew. Chem.
2002,
114:
1327 ; Angew. Chem. Int. Ed.; 2002 , 41 : 1276
<A NAME="RA42606ST-77">77 </A>
Marshall E.
Science
2004,
306:
630
See also:
<A NAME="RA42606ST-78A">78a </A>
Siegmund K.
Steiner UE.
Richert C.
J. Chem. Inf. Comput. Sci.
2003,
43:
2153-2162
<A NAME="RA42606ST-78B">78b </A>
Plutowski U.
Richert C.
Angew. Chem.
2005,
117:
627-631 ; Angew. Chem., Int. Ed. Engl.; 2005 , 44 : 621-625
<A NAME="RA42606ST-79A">79a </A>
Watson JD.
Crick FH.
Nature
1953,
171:
737
<A NAME="RA42606ST-79B">79b </A>
Watson JD.
Crick FH.
Nature
1953,
171:
964
<A NAME="RA42606ST-80">80 </A>
Nucleic Acids in Chemistry and Biology
Blackburn GM.
Gait MJ.
Oxford University Press;
Oxford:
1996.
<A NAME="RA42606ST-81">81 </A>
Crick FHC.
J. Mol. Biol.
1966,
19:
548
<A NAME="RA42606ST-82">82 </A>
Bleczinski CF.
Richert C.
J. Am. Chem. Soc.
1999,
121:
10889
<A NAME="RA42606ST-83">83 </A>
Bijsterbosch MK.
Rump ET.
De Vrueh RL.
Dorland R.
van Veghel R.
Tivel KL.
Biessen EA.
van Berkel TJ.
Manoharan M.
Nucleic Acids Res.
2000,
28:
2717
<A NAME="RA42606ST-84A">84a </A>
Puri N.
Zamaratski E.
Sund C.
Chattopadhyaya J.
Tetrahedron
1997,
53:
10409
<A NAME="RA42606ST-84B">84b </A>
Zamaratski E.
Chattopadhyaya J.
Tetrahedron
1998,
54:
8183
<A NAME="RA42606ST-84C">84c </A>
Ossipov D.
Pradeepkumar PI.
Holmer M.
Chattopadhyaya J.
J. Am. Chem. Soc.
2001,
123:
3551
<A NAME="RA42606ST-85A">85a </A>
Lewis FD.
Wu T.
Zhang Y.
Letsinger RL.
Greenfield SR.
Wasielewski MR.
Science
1997,
277:
673
<A NAME="RA42606ST-85B">85b </A>
Sanishivili RL.
Joachimiak A.
Tereshko V.
Egli M.
J. Am. Chem. Soc.
1999,
121:
9905
<A NAME="RA42606ST-85C">85c </A>
Lewis FD.
Wu TF.
Liu XY.
Letsinger RL.
Greenfield SR.
Miller SE.
Wasielewski MR.
J. Am. Chem. Soc.
2000,
122:
2889
<A NAME="RA42606ST-85D">85d </A>
Lewis FD.
Wu YS.
Liu XY.
J. Am. Chem. Soc.
2002,
124:
12165
<A NAME="RA42606ST-86A">86a </A>
Guckian KM.
Schweitzer BA.
Ren RXF.
Sheils CJ.
Paris PL.
Tahmassebi DC.
Kool ET.
J. Am. Chem. Soc.
1996,
118:
8182
<A NAME="RA42606ST-86B">86b </A>
Ren RXF.
Chaudhuri NC.
Paris PL.
Rumney S.
Kool ET.
J. Am. Chem. Soc.
1996,
118:
7671
<A NAME="RA42606ST-87">87 </A>
Nguyen HK.
Fournier O.
Asseline U.
Dupret D.
Thuong NT.
Nucleic Acids Res.
1999,
27:
1492
<A NAME="RA42606ST-88A">88a </A>
Rojas Stütz JA.
Richert C.
J. Am. Chem. Soc.
2001,
123:
12718
<A NAME="RA42606ST-88B">88b </A>
Baumhof P.
Griesang N.
Bächle M.
Richert C.
J. Org. Chem.
2006,
71:
1060
<A NAME="RA42606ST-88C">88c </A>
Rojas Stütz JA.
Richert C.
Chem. Eur. J.
2006,
12:
24722
<A NAME="RA42606ST-89">89 </A>
Rojas Stütz, J. A.; Kervio, E.; Deck, C.; Richert, C.; manuscript submitted.