Zusammenfassung
Hintergrund: Das obstruktive Schlafapnoe-Syndrom (OSAS) bedingt eine Störung der nächtlichen Respiration, die sich negativ auf die Regulation der Atmung am Tage auswirken könnte. Wir untersuchten daher die ventilatorische Effizienz, definiert als Quotient aus Ventilation und CO2 -Abatmung (VšE /VšCO2 ), bei Patienten mit OSAS vor und unter nasaler Überdruck (CPAP)-Therapie unter spiroergometrischer Belastung am Tage. Patienten und Methodik: VšE /VšCO2 unter Belastung, beschrieben als Steigung (ΔVšE vs. VšCO2 ) und als niedrigstes Verhältnis (VšE /VšCO2 min.), wurde im Bereich der linearen VšE /VšCO2 -Korrelation unterhalb der anaeroben Schwelle bei 21 Patienten mit polysomnographisch gesichertem OSAS untersucht. Eine Verlaufsuntersuchung wurde bei 16 dieser Patienten nach mindestens 6-monatiger CPAP-Therapie und bei 5 Patienten, die CPAP ablehnten und daher als Kontrollgruppe dienten, durchgeführt. Ergebnisse: Das Gesamtkollektiv (n = 21) wies eine im Vergleich zu 2 gesunden Normkollektiven bessere ventilatorische Effizienz auf, wobei die Unterschiede bezüglich ΔVšE vs. VšCO2 statistische Signifikanz erreichten. Nach durchschnittlich 308,8 ± 104,0 Tagen zeigten die 16 CPAP-therapierten Patienten keine signifikante Änderung ihrer ventilatorischen Effizienz unter Belastung im Vergleich zur Kontrollgruppe. Schlussfolgerungen: Patienten mit einem OSAS zeigen keine Hinweise für eine Einschränkung der ventilatorischen Effizienz unter Belastung. Die Langzeittherapie mit CPAP führt bei Patienten mit einem OSAS zu keiner signifikanten Änderung der ventilatorischen Effizienz unter Belastung. Die im Vergleich zu gesunden Kontrollkollektiven verbesserte ventilatorische Effizienz bei Patienten mit OSAS ist am ehesten durch Unterschiede bei den anthropometrischen Daten (z. B. Adipositas) und bei der spiroergometrischen Ableitung (z. B. halbliegende Position) erklärbar.
Abstract
Background: Obstructive sleep apnea syndrome (OSAS) is a nocturnal breathing disorder with possibly negative consequences on daytime control of ventilatory drive. We therefore investigated ventilatory efficiency, defined as the ventilatory equivalent for CO2 (VšE /VšCO2 ), in patients with OSAS during exercise before and under treatment with continuous positive airway pressure (CPAP). Patients and Methods: In 21 patients with untreated OSAS, ventilatory efficiency, described as the slope (ΔVšE vs. VšCO2 ) and the lowest ratio (VšE /VšCO2 min) of the ventilatory equivalent for CO2 , was determined below the anaerobic threshold using spiroergometry. A follow-up after at least 6 months of CPAP therapy was performed in 16 of these patients and in 5 CPAP-neglecting patients with OSAS, who served as controls. Results: In 21 patients with untreated OSAS, ΔVšE vs. VšCO2 was significantly and VšE /VšCO2 min non-significantly lower, revealing better ventilatory efficiency, compared to normal values. In 16 patients, ventilatory efficiency did not change after on average 305.7 ± 104.8 nights of CPAP-therapy, compared to 5 controls. Conclusions: OSAS is not associated with a disturbed ventilatory efficiency during exercise. Long-term CPAP-therapy does not change ventilatory efficiency during exercise in patients with OSAS. The improved ventilatory efficiency during exercise compared to normal controls may be due to differences concerning anthropometric data (e. g., obesity, hypertension) and cardiopulmonary exercise-test (45° lying position).
Literatur
1
Reindl I, Kleber F X.
Exertional hyperpnoea in patients with chronic heart failure is a reversible cause of exercise intolerance.
Basic Res Cardiol.
1996;
91 (Suppl 1)
37-43
2
Habedank D, Reindl I, Vietzke G. et al .
Ventilatory efficiency and exercise tolerance in 101 healthy volunteers.
Eur J Appl Physiol.
1998;
77
421-426
3
Sun X G, Hansen J G, Garatachea N. et al .
Ventilatory efficiency during exercise in healthy subjects.
Am J Respir Crit Care Med.
2002;
166
1443-1448
4
Tafil-Klawe M, Raschke F, Becker H. et al .
Diagnostik der Atmungsregulation bei Patienten mit obstruktivem Schlafapnoe-Syndrom.
Pneumologie.
1989;
43 (Suppl 1)
572-575
5
Pillar G, Schnall R P, Peled N. et al .
Impaired respiratory response to resistive load during sleep in healthy offspring of patients with obstructive sleep apnea.
Am J Respir Crit Care Med.
1997;
155
1602-1608
6
Osanai S, Akiba Y, Fujiuchi S. et al .
Depression of peripheral chemosensitivity by a dopaminergic mechanism in patients with obstructive sleep apnoea syndrome.
Eur Respir J.
1999;
13
418-423
7
Fuse K, Satoh M, Yokota T. et al .
Regulation of ventilation before and after sleep in patients with obstructive sleep apnoea.
Respirology.
1999;
4
125-130
8
Weitzenblum E, Chaouat A, Kessler R. et al .
Daytime hypoventilation in obstructive sleep apnoea syndrome.
Sleep Med Rev.
1999;
3
79-93
9
Laaban J P, Chailleux E.
Daytime hypercapnia in adult patients with obstructive sleep apnea syndrome in France, before initiating nocturnal nasal continuous positive airway pressure therapy.
Chest.
2005;
127
710-715
10
De Miguel J, Sanchez-Alarcos J M, Alvarez-Sala R. et al .
Long-term effects of treatment with nasal continuous positive airway pressure on lung function in patients with overlap syndrome.
Sleep Breath.
2002;
6
3-10
11
Klinnert W, Orth M, Rasche K. et al .
Verändert die nCPAP-Therapie die Lungenfunktion bei Patienten mit obstruktivem Schlafapnoe-Syndrom?.
Pneumologie.
2004;
58
712-717
12
Chaouat A, Weitzenblum E, Kessler R. et al .
Five-year effects of nasal continuous positive airway pressure in obstructive sleep apnoea syndrome.
Eur Respir J.
1997;
10
2578-2582
13
Taguchi O, Hida W, Okabe S. et al .
Improvement of exercise performance with short-term nasal continuous positive airway pressure in patients with obstructive sleep apnea.
Tohuku J Exp Med Sep.
1997;
183 (1)
45-53
14
Schlosser B, Walther J W, Rasche K. et al .
Verbesserung der kardiopulmonalen Leistungsfähigkeit bei Patienten mit obstruktivem Schlafapnoe-Syndrom unter CPAP-Langzeittherapie.
Med Klin.
2006;
101
107-113
15
Siegrist J, Peter J, Himmelmann J. et al .
Erfahrungen mit einem Anamnesebogen zur Diagnostik der Schlafapnoe.
Prax Klin Pneumol.
1987;
41
357-363
16
Johns M W.
Daytime Sleepiness, Snoring, and Obstructive Sleep Apnea: The Epworth Sleepiness Scale.
Chest.
1993;
103
30-36
17
American Sleep Disorders Association .
Practice parameters for the treatment of snoring and obstructive sleep apnea.
Sleep.
1995;
18
511-513
18
Kribbs N, Pack A, Klein L. et al .
Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea.
Am Rev Respir Dis.
1993;
147
887-895
19
Weber K T, Kinasewitz G T, Janicki J S. et al .
Oxygen utilization and ventilation during exercise in patients with chronic heart failure.
Circulation.
1982;
56
1213-1223
20 Wasserman K. Principles of Exercise Testing and Interpretation. Philadelphia, USA: Lea & Febiger 1999
21 Kleber F X, Reindl I, Wernecke K D. et al .Dyspnea in heart failure. In: Wasserman K (Hrsg). Exercise gas exchange in heart disease. New York, USA: Futura; Armonk 1995: 95-107
22
Metra M, Dei Cas L, Panina G. et al .
Exercise hyperventilation in chronic congestive heart failure and its relation to functional capacity and hemodynamics.
Am J Cardiol.
1992;
70
622-628
23
Wasserman K, Zhang Y Y, Riley M.
Ventilation during exercise in chronic heart failure.
Basic Res Cardiol.
1996;
91
1-11
24 Rühle K-H. Praxisleitfaden der Spiroergometrie. Stuttgart: Kohlhammer Verlag 2001
25
Young T, Peppard P E, Gottlieb D J.
Epidemilogy of obstructive sleep apnea: A population health perspective.
Am J Respir Crit Care Med.
2002;
165
1217-1239
26
Trzebski A, Tafil M, Zoitowski M. et al .
Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension.
Cardiovasc Res.
1982;
16
163-172
27
Matsumoto H, Osanai S, Nakano H. et al .
Ventilatory responses in patients with essential hypertension.
Jpn J Physiol.
1991;
41
831-842
28
Burki N K, Baker R W.
Ventilatory regulation in eucapnic morbid obesity.
Am Rev Respir Dis.
1984;
129
538-543
29
El-Gamal H, Khayat A, Shikora S. et al .
Relationship of dyspnea to respiratory drive and pulmonary function tests in obese patients before and after weight loss.
Chest.
2005;
128
3870-3874
30
Marinov B, Kostianev S, Turnovska T.
Ventilatory efficiency and rate of perceived exertion in obese and non-obese children performing standardized exercise.
Clin Physiol Funct Imaging.
2002;
22
254-260
31
Sun X G, Hansen J G, Oudiz R J. et al .
Exercise pathophysiology in patients with primary pulmonary hypertension.
Circulation.
2001;
104
429-435
32
Sun X G, Hansen J G, Oudiz R J. et al .
Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension.
Circulation.
2002;
105
54-60
33
Eschenbacher W L, Mannina A.
An algorithm for interpretation of cardiopulmonary exercise tests.
Chest.
1990;
97
263-267
34
Hansen J E, Wasserman K.
Pathophysiology of activity limitation in patients with interstitial lung disease.
Chest.
1996;
109
1566-1576
35
Medinger A E, Khouri S, Rohatgi P K.
Sarcoidosis: the value of exercise testing.
Chest.
2001;
120
93-101
36
Gitt A K, Wasserman K, Kilkowski C. et al .
Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death.
Circulation.
2002;
106
3079-3084
37
Dimoloulos K, Okonko D O, Diller G P. et al .
Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival.
Circulation.
2006;
113
2796-2802
38
Arzt M, Schulz M, Wensel R. et al .
Nocturnal continuous positive airway pressure improves ventilatory efficiency during exercise in patients with chronic heart failure.
Chest.
2005;
127
794-802
39
Hudgel D W, Gordon E A, Thanakitcharu S. et al .
Instability of ventilatory control in patients with obstructive sleep apnea.
Am J Respir Crit Care Med.
1998;
158
1142-1149
40
Espinoza H, Thornton A T, Sharp D. et al .
Sleep fragmentation and ventilatory responsiveness to hypercapnia.
Am Rev Respir Dis.
1991;
144
1121-1124
41
Han F, Cheng E, Wei H.
Breathing control of patients with obstructive sleep apnea syndrome (OSAS) during sleep.
Zhonghua Jie He He Hu Xi Za Zhi.
1998;
21
471-476
42
Lin C C.
Effect of nasal CPAP on ventilatory drive in normocapnic and hypercapnic patients with obstructive sleep apnoea syndrome.
Eur Respir J.
1994;
7
2005-2010
43
Moura S M, Bittencourt L R, Bagnato M C. et al .
Acute effect of nasal continuous positive air pressure on the ventilatory control of patients with obstructive sleep apnea.
Respiration.
2001;
68
243-249
44
Bradley T D, Floras J S.
Sleep apnea and heart failure part II: Central sleep apnea.
Circulation.
2003;
107
1822-1826
45
Arzt M, Harth M, Luchner A. et al .
Enhanced ventilatory response to exercise in patients with chronic heart failure and central sleep apnea.
Circulation.
2003;
107
1998-2003
Priv. Doz. Dr. med. Hans-Werner Duchna
Berufgenossenschaftliche Kliniken Bergmannsheil Klinikum der Ruhr-Universität-Bochum Medizinische Klinik III Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin
Bürkle-de-la-Camp-Platz 1
44789 Bochum
Email: hans-werner.duchna@rub.de