Rofo 2007; 179(5): 463-472
DOI: 10.1055/s-2007-962941
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Analyse aortaler Hämodynamik und Gefäßwandparameter mittels fluss-sensitiver in-vivo 4D-MRT bei 3 Tesla

Flow-Sensitive in-vivo 4D MR Imaging at 3T for the Analysis of Aortic Hemodynamics and Derived Vessel Wall ParametersA. Frydrychowicz1 , M. Markl1 , A. Harloff2 , A. F. Stalder1 , J. Bock1 , T. A. Bley1 , A. Berger1 , M. F. Russe1 , C. Schlensak3 , J. Hennig1 , M. Langer1
  • 1Abteilung Röntgendiagnostik, Medizin Physik, Universitätsklinikum Freiburg
  • 2Abteilung Neurologie und Neurophysiologie, Universitätsklinikum Freiburg
  • 3Abteilung Herz- und Gefäßchirurgie, Universitätsklinikum Freiburg
Further Information

Publication History

eingereicht: 7.12.2006

angenommen: 22.1.2007

Publication Date:
13 April 2007 (online)

Zusammenfassung

Moderne fluss- oder bewegungssensitive Phasenkontrast MR-Bildgebung, auch „velocity mapping” genannt, erlaubt in einer Messung die Abbildung der 3-dimensionalen Gefäßmorphologie mitsamt der zeitaufgelösten Erfassung der Blutflussgeschwindigkeiten in den drei Raumrichtungen (3-direktional). Dabei kann die Blutströmung im gesamten Gefäßgebiet mit vollständiger räumlicher und zeitlicher Abdeckung, d. h. entlang des gesamten EKG-Zyklus, erfasst werden. In Kombination mit geeigneter Software werden die Darstellung und die qualitative Analyse normaler und pathologischer Hämodynamik möglich. Dies erlaubt, unabhängig von vordefinierten 2-dimensionalen Schichten, die freie Orientierung im 3D-Datenvolumen und die entsprechende Möglichkeit der lückenlosen Evaluierung beliebiger Gefäßabschnitte. So kann die 4-Dimensionalität der Daten vollständig ausgenutzt werden, um zusätzliche Aussagen und ein besseres Verständnis der zum Teil komplexen zeitlichen und räumlichen Änderungen des Blutflussverhaltens zu erreichen. Damit hat diese Technik das Potenzial, die Limitationen bestehender diagnostischer Verfahren zu überwinden und neue Parameter in die Diagnostik einzubringen, insbesondere vor dem Hintergrund der aktuell wachsenden Bedeutung von Faktoren wie Wandschubspannung und Oszillationsindex in der Diskussion um das Fortschreiten stenosierender und dilatativer Gefäßpathologien. Darüber hinaus können einfache, empirische Kriterien zur Indikationsstellung und Therapieentscheidung durch funktionelle Parameter bereichert oder ersetzt werden. Wir stellen einen Überblick der Literatur und Fallbeispiele vor, die das Verständnis für die methodischen Grundlagen und die zukünftigen Möglichkeiten erweitern sollen. Dabei steht die Erfassung und Visualisierung vaskulärer Hämodynamik insbesondere in den großen Gefäßen wie der thorakalen Aorta im Vordergrund.

Abstract

Modern phase contrast MR imaging at 3 Tesla allows the depiction of 3D morphology as well as the acquisition of time-resolved blood flow velocities in 3 directions. In combination with state-of-the-art visualization and data processing software, the qualitative and quantitative analysis of hemodynamic changes associated with vascular pathologies is possible. The 4D nature of the acquired data permits free orientation within the vascular system of interest and offers the opportunity to quantify blood flow and derived vessel wall parameters at any desired location within the data volume without being dependent on predefined 2D slices. The technique has the potential of overcoming the limitations of current diagnostic strategies and of implementing new diagnostic parameters. In light of the recent discussions regarding the influence of the wall shear stress and the oscillatory shear index on the genesis of arteriosclerosis and dilatative vascular processes, flow-sensitive 4D MRI may provide the missing diagnostic link. Instead of relying on experience-based parameters such as aneurysm size, new hemodynamic considerations can deepen our understanding of vascular pathologies. This overview reviews the underlying methodology at 3T, the literature on time-resolved 3D MR velocity mapping, and presents case examples. By presenting the pre- and postoperative assessment of hemodynamics in a thoracic aortic aneurysm and the detailed analysis of blood flow in a patient with coarctation we underline the potential of time-resolved 3D phase contrast MR at 3T for hemodynamic assessment of vascular pathologies, especially in the thoracic aorta.

Literatur

  • 1 Davies P F. Flow-mediated endothelial mechanotransduction.  Physiol Rev. 1995;  75 519-560
  • 2 Langille B L, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent.  Science. 1986;  231 405-407
  • 3 Glagov S, Weisenberg E, Zarins C K. et al . Compensatory enlargement of human atherosclerotic coronary arteries.  N Engl J Med. 1987;  316 1371-1375
  • 4 Cheng C, Tempel D, Haperen van R. et al . Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress.  Circulation. 2006;  113 2744-2753
  • 5 Dake M D, Miller D C, Mitchell R S. et al . The „first generation” of endovascular stent-grafts for patients with aneurysms of the descending thoracic aorta.  J Thorac Cardiovasc Surg. 1998;  116 689-703; discussion 703 - 704
  • 6 Doss M, Balzer J, Martens S. et al . Surgical versus endovascular treatment of acute thoracic aortic rupture: a single-center experience.  Ann Thorac Surg. 2003;  76 1465-1469; discussion 1469 - 1470
  • 7 Sprague E A, Steinbach B L, Nerem R M. et al . Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium.  Circulation. 1987;  76 648-656
  • 8 Nerem R M. Vascular fluid mechanics, the arterial wall, and atherosclerosis.  J Biomech Eng. 1992;  114 274-282
  • 9 Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery.  Am J Physiol. 1980;  239 H14-H21
  • 10 Malek A M, Alper S L, Izumo S. Hemodynamic shear stress and its role in atherosclerosis.  Jama. 1999;  282 2035-2042
  • 11 Tsuji T, Suzuki J, Shimamoto R. et al . Vector analysis of the wall shear rate at the human aortoiliac bifurcation using cine MR velocity mapping.  AJR Am J Roentgenol. 2002;  178 995-999
  • 12 Moran P R. A flow velocity zeugmatographic interlace for NMR imaging in humans.  Magn Reson Imaging. 1982;  1 197-203
  • 13 Katoh M, Spuentrup E, Stuber M. et al . MR-Koronarangiographie mit Inversionspuls zur Darstellung des koronaren Blutflusses.  Fortschr Röntgenstr. 2005;  177 173-178
  • 14 Jager L, Hoffmann A, Werhahn K J. et al . Analyse und Korrektur von ballistokardiogenen EEG-Artefakten von im MR-Tomographen aufgezeichneten EEGs.  Fortschr Röntgenstr. 2005;  177 1059-1064
  • 15 Bryant D J, Payne J A, Firmin D N. et al . Measurement of flow with NMR imaging using a gradient pulse and phase difference technique.  J Comput Assist Tomogr. 1984;  8 588-593
  • 16 Feinberg D A, Crooks L E, Sheldon P. et al . Magnetic resonance imaging the velocity vector components of fluid flow.  Magn Reson Med. 1985;  2 555-566
  • 17 Underwood S R, Firmin D N, Klipstein R H. et al . Magnetic resonance velocity mapping: clinical application of a new technique.  Br Heart J. 1987;  57 404-412
  • 18 Firmin D N, Nayler G L, Klipstein R H. et al . In vivo validation of MR velocity imaging.  J Comput Assist Tomogr. 1987;  11 751-756
  • 19 Walker M F, Souza S P, Dumoulin C L. Quantitative flow measurement in phase contrast MR angiography.  J Comput Assist Tomogr. 1988;  12 304-313
  • 20 Pelc N J, Herfkens R J, Shimakawa A. et al . Phase contrast cine magnetic resonance imaging.  Magn Reson Q. 1991;  7 229-254
  • 21 Pelc N J, Sommer F G, Li K C. et al . Quantitative magnetic resonance flow imaging.  Magn Reson Q. 1994;  10 125-247
  • 22 Kunz R P, Oellig F, Krummenauer F. et al . Anteil des frühen systolischen Flussanstiegs am antegrad fließenden Gesamtvolumen bei Phasenkontrast-Flussmessungen in Atemanhaltetechnik.  Fortschr Röntgenstr. 2005;  177 637-645
  • 23 Schoenberg S O, Just A, Bock M. et al . Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements.  Am J Physiol. 1997;  272 H2477-2484
  • 24 Schoenberg S O, Knopp M V, Bock M. et al . Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements.  Radiology. 1997;  203 45-53
  • 25 Gutberlet M, Venz S, Kahl A. et al . Flussquantifizierung in Hämodialyseshunts mittels Phasenkontrast-Magnetresonanzangiographie (PC-MRA) im Vergleich zur Duplexsonographie.  Fortschr Röntgenstr. 1998;  169 163-169
  • 26 Dulce M C, Mostbeck G H, O’Sullivan M. et al . Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging.  Radiology. 1992;  185 235-240
  • 27 Kilner P J, Manzara C C, Mohiaddin R H. et al . Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis.  Circulation. 1993;  87 1239-1248
  • 28 Kozerke S, Schwitter J, Pedersen E M. et al . Aortic and mitral regurgitation: quantification using moving slice velocity mapping.  J Magn Reson Imaging. 2001;  14 106-112
  • 29 Kozerke S, Hasenkam J M, Nygaard H. et al . Heart motion-adapted MR velocity mapping of blood velocity distribution downstream of aortic valve prostheses: initial experience.  Radiology. 2001;  218 548-555
  • 30 Brenner L D, Caputo G R, Mostbeck G. et al . Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging.  J Am Coll Cardiol. 1992;  20 1246-1250
  • 31 Varaprasathan G A, Araoz P A, Higgins C B. et al . Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded cine MR imaging.  Radiographics. 2002;  22 895-905; discussion 905 - 906
  • 32 Wang Z J, Reddy G P, Gotway M B. et al . Cardiovascular shunts: MR imaging evaluation.  Radiographics. 2003;  23 S181-194
  • 33 Unser M. Splines. A Perfect Fit for Signal and Image Processing.  IEEE Signal Processing Magazine. 1999;  November 22-38
  • 34 Moore J A, Rutt B K, Karlik S J. et al . Computational blood flow modeling based on in vivo measurements.  Ann Biomed Eng. 1999;  27 627-640
  • 35 Stalder A F, Frydrychowicz A, Canstein C. et al . Quantitative planar analysis of flow sensitive 3D CINE MRI. In Proc: ISMRM Workshop on Flow and Motion: Imaging Assessment of Cardiovascular and Tissue Mechanics, New York, USA.  2006; 
  • 36 Mohiaddin R H, Kilner P J, Rees S. et al . Magnetic resonance volume flow and jet velocity mapping in aortic coarctation.  J Am Coll Cardiol. 1993;  22 1515-1521
  • 37 Steffens J C, Bourne M W, Sakuma H. et al . Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging.  Circulation. 1994;  90 937-943
  • 38 Gutberlet M, Hosten N, Vogel M. et al . Quantification of morphologic and hemodynamic severity of coarctation of the aorta by magnetic resonance imaging.  Cardiol Young. 2001;  11 512-520
  • 39 Pujadas S, Reddy G P, Weber O. et al . Phase contrast MR imaging to measure changes in collateral blood flow after stenting of recurrent aortic coarctation: initial experience.  J Magn Reson Imaging. 2006;  24 72-76
  • 40 Dinsmore R E, Wedeen V J, Miller S W. et al . MRI of dissection of the aorta: recognition of the intimal tear and differential flow velocities.  Am J Roentgenol. 1986;  146 1286-1288
  • 41 Bogren H G, Underwood S R, Firmin D N. et al . Magnetic resonance velocity mapping in aortic dissection.  Br J Radiol. 1988;  61 456-462
  • 42 Chang J M, Friese K, Caputo G R. et al . MR measurement of blood flow in the true and false channel in chronic aortic dissection.  J Comput Assist Tomogr. 1991;  15 418-423
  • 43 Strotzer M, Aebert H, Lenhart M. et al . Morphology and hemodynamics in dissection of the descending aorta. Assessment with MR imaging.  Acta Radiol. 2000;  41 594-600
  • 44 Kunz R P, Oberholzer K, Kuroczynski W. et al . Assessment of chronic aortic dissection: contribution of different ECG-gated breath-hold MRI techniques.  Am J Roentgenol. 2004;  182 1319-1326
  • 45 Bogren H G, Mohiaddin R H, Yang G Z. et al . Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts.  J Thorac Cardiovasc Surg. 1995;  110 704-714
  • 46 Bogren H G, Klipstein R H, Firmin D N. et al . Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping.  Am Heart J. 1989;  117 1214-1222
  • 47 Kilner P J, Yang G Z, Mohiaddin R H. et al . Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping.  Circulation. 1993;  88 2235-2247
  • 48 Bogren H G, Buonocore M H. Blood flow measurements in the aorta and major arteries with MR velocity mapping.  J Magn Reson Imaging. 1994;  4 119-130
  • 49 Bogren H G, Mohiaddin R H, Klipstein R K. et al . The function of the aorta in ischemic heart disease: a magnetic resonance and angiographic study of aortic compliance and blood flow patterns.  Am Heart J. 1989;  118 234-247
  • 50 Bogren H G, Mohiaddin R H, Kilner P J. et al . Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease.  J Magn Reson Imaging. 1997;  7 784-93
  • 51 Wentzel J J, Corti R, Fayad Z A. et al . Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging.  J Am Coll Cardiol. 2005;  45 846-854
  • 52 Steinman D A, Taylor C A. Flow imaging and computing: large artery hemodynamics.  Ann Biomed Eng. 2005;  33 1704-1709
  • 53 Lei M, Archie J P, Kleinstreuer C. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.  J Vasc Surg. 1997;  25 637-646
  • 54 Markl M, Schumacher R, Kuffer J. et al . Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology.  Magn Reson Mater Phys. 2005;  18 288-292
  • 55 Napel S, Lee D H, Frayne R. et al . Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging.  J Magn Reson Imaging. 1992;  2 143-153
  • 56 Buonocore M H. Algorithms for improving calculated streamlines in 3-D phase contrast angiography.  Magn Reson Med. 1994;  31 22-30
  • 57 Bogren H G, Buonocore M H. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects.  J Magn Reson Imaging. 1999;  10 861-869
  • 58 Bogren H G, Buonocore M H, Valente R J. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects.  J Magn Reson Imaging. 2004;  19 417-427
  • 59 Wigstrom L, Ebbers T, Fyrenius A. et al . Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI.  Magn Reson Med. 1999;  41 793-799
  • 60 Wigstrom L, Sjoqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging.  Magn Reson Med. 1996;  36 800-803
  • 61 Markl M, Chan F P, Alley M T. et al . Time-resolved three-dimensional phase-contrast MRI.  J Magn Reson Imaging. 2003;  17 499-506
  • 62 Markl M, Draney M T, Hope M D. et al . Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients.  J Comput Assist Tomogr. 2004;  28 459-68
  • 63 Markl M, Harloff A, Zaitsev M. et al . Time Resolved 3D MR Velocity Mapping at 3T: Improved Navigator Gated Assessment of Vascular Anatomy and Blood Flow.  J Magn Reson Imaging. 2007, im Druck; 
  • 64 Kvitting J P, Ebbers T, Wigstrom L. et al . Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery.  J Thorac Cardiovasc Surg. 2004;  127 16 021-1607
  • 65 Markl M, Draney M T, Miller D C. et al . Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement.  J Thorac Cardiovasc Surg. 2005;  130 456-463
  • 66 Hope M D, Levin J M, Markl M. et al . Images in cardiovascular medicine. Four-dimensional magnetic resonance velocity mapping in a healthy volunteer with pseudocoarctation of the thoracic aorta.  Circulation. 2004;  109 3221-3222
  • 67 Markl M, Frydrychowicz A, Harloff A. et al . Flow Imaging of the Thoracic Aorta at 3T. In Proc: ISMRM Workshop on Flow and Motion: Imaging Assessment of Cardiovascular and Tissue Mechanics, New York, USA.  2006; 
  • 68 Lotz J, Doker R, Noeske R. et al . In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios.  J Magn Reson Imaging. 2005;  21 604-610
  • 69 Michaely H J, Nael K, Schoenberg S O. et al . Die Machbarkeit von räumlich hoch-aufgelöster Magnetresonanzangiographie (MRA) der Nierenarterien bei 3.0 T.  Fortschr Röntgenstr. 2005;  177 800-804
  • 70 Frydrychowicz A, Weigang E, Langer M. et al . Flow-sensitive 3D magnetic resonance imaging reveals complex blood flow alterations in aortic Dacron graft repair.  Interact CardioVasc Thorac Surg. 2006;  5 340-342
  • 71 Frydrychowicz A, Weigang E, Harloff A. et al . Images in cardiovascular medicine. Time-resolved 3-dimensional magnetic resonance velocity mapping at 3 T reveals drastic changes in flow patterns in a partially thrombosed aortic arch.  Circulation. 2006;  113 e460-461
  • 72 Frydrychowicz A, Schlensak C, Stalder A F. et al . Ascending-Descending Aortic Bypass Surgery in Aortic Arch Coarctation: 4D MR Flow Analysis.  J Thorac Cardiovasc Surg. 2007;  133 260-262
  • 73 Frydrychowicz A, Harloff A, Jung B. et al . Time-Resolved 3D MR Flow Analysis at 3T: Insights into Major Hemodynamic Changes Associated with Aortic Pathologies.  J Comput Assist Tomogr. 2007;  31 9-15
  • 74 Frydrychowicz A, Dittrich S, Bley T A. et al . Visualisation of blood flow through a patent arterial duct using time-resolved 3-dimensional, 3-directional phase contrast CMR at 3Tesla.  Journal of Cardiovascular Magentic Resonance. 2007, im Druck; 
  • 75 Gluer C C, Barkmann R, Hahn H K. et al . Parametric Biomedical Imaging - What Defines the Quality of Quantitative Radiological Approaches?.  Fortschr Röntgenstr. 2006;  178 1187-1201
  • 76 Buonocore M H. Visualizing blood flow patterns using streamlines, arrows, and particle paths.  Magn Reson Med. 1998;  40 210-226
  • 77 Frydrychowicz A, Winterer J, Zaitsev M. et al . Visualization of Femoral and Iliac Artery Hemodynamics Using Time-Resolved 3D Phase Contrast MRI at 3T.  J Magn Reson Imaging. 2007, im Druck; 
  • 78 Wetzel S, Meckel S, Frydrychowicz A. et al . In-Vivo Assessment and Visualization of Intracranial Arterial Hemodynamics with Flow Sensitized 4D MRI at 3T.  Am J Neuroradiol. 2007, im Druck; 
  • 79 Oliver J M, Gallego P, Gonzalez A. et al . Risk factors for aortic complications in adults with coarctation of the aorta.  J Am Coll Cardiol. 2004;  44 1641-1647
  • 80 Richter Y, Edelman E R. Cardiology is flow.  Circulation. 2006;  113 2679-2682

Dr. Alex Frydrychowicz

Abteilung Röntgendiagnostik, Medizin Physik, Universitätsklinikum Freiburg

Hugstetter Str. 55

79106 Freiburg

Phone: ++49/7 61/2 70 34 01

Fax: ++49/7 61/2 70 38 31

Email: alex.frydrychowicz@uniklinik-freiburg.de

    >