Subscribe to RSS
DOI: 10.1055/s-2007-962941
© Georg Thieme Verlag KG Stuttgart · New York
Die Analyse aortaler Hämodynamik und Gefäßwandparameter mittels fluss-sensitiver in-vivo 4D-MRT bei 3 Tesla
Flow-Sensitive in-vivo 4D MR Imaging at 3T for the Analysis of Aortic Hemodynamics and Derived Vessel Wall ParametersPublication History
eingereicht: 7.12.2006
angenommen: 22.1.2007
Publication Date:
13 April 2007 (online)

Zusammenfassung
Moderne fluss- oder bewegungssensitive Phasenkontrast MR-Bildgebung, auch „velocity mapping” genannt, erlaubt in einer Messung die Abbildung der 3-dimensionalen Gefäßmorphologie mitsamt der zeitaufgelösten Erfassung der Blutflussgeschwindigkeiten in den drei Raumrichtungen (3-direktional). Dabei kann die Blutströmung im gesamten Gefäßgebiet mit vollständiger räumlicher und zeitlicher Abdeckung, d. h. entlang des gesamten EKG-Zyklus, erfasst werden. In Kombination mit geeigneter Software werden die Darstellung und die qualitative Analyse normaler und pathologischer Hämodynamik möglich. Dies erlaubt, unabhängig von vordefinierten 2-dimensionalen Schichten, die freie Orientierung im 3D-Datenvolumen und die entsprechende Möglichkeit der lückenlosen Evaluierung beliebiger Gefäßabschnitte. So kann die 4-Dimensionalität der Daten vollständig ausgenutzt werden, um zusätzliche Aussagen und ein besseres Verständnis der zum Teil komplexen zeitlichen und räumlichen Änderungen des Blutflussverhaltens zu erreichen. Damit hat diese Technik das Potenzial, die Limitationen bestehender diagnostischer Verfahren zu überwinden und neue Parameter in die Diagnostik einzubringen, insbesondere vor dem Hintergrund der aktuell wachsenden Bedeutung von Faktoren wie Wandschubspannung und Oszillationsindex in der Diskussion um das Fortschreiten stenosierender und dilatativer Gefäßpathologien. Darüber hinaus können einfache, empirische Kriterien zur Indikationsstellung und Therapieentscheidung durch funktionelle Parameter bereichert oder ersetzt werden. Wir stellen einen Überblick der Literatur und Fallbeispiele vor, die das Verständnis für die methodischen Grundlagen und die zukünftigen Möglichkeiten erweitern sollen. Dabei steht die Erfassung und Visualisierung vaskulärer Hämodynamik insbesondere in den großen Gefäßen wie der thorakalen Aorta im Vordergrund.
Abstract
Modern phase contrast MR imaging at 3 Tesla allows the depiction of 3D morphology as well as the acquisition of time-resolved blood flow velocities in 3 directions. In combination with state-of-the-art visualization and data processing software, the qualitative and quantitative analysis of hemodynamic changes associated with vascular pathologies is possible. The 4D nature of the acquired data permits free orientation within the vascular system of interest and offers the opportunity to quantify blood flow and derived vessel wall parameters at any desired location within the data volume without being dependent on predefined 2D slices. The technique has the potential of overcoming the limitations of current diagnostic strategies and of implementing new diagnostic parameters. In light of the recent discussions regarding the influence of the wall shear stress and the oscillatory shear index on the genesis of arteriosclerosis and dilatative vascular processes, flow-sensitive 4D MRI may provide the missing diagnostic link. Instead of relying on experience-based parameters such as aneurysm size, new hemodynamic considerations can deepen our understanding of vascular pathologies. This overview reviews the underlying methodology at 3T, the literature on time-resolved 3D MR velocity mapping, and presents case examples. By presenting the pre- and postoperative assessment of hemodynamics in a thoracic aortic aneurysm and the detailed analysis of blood flow in a patient with coarctation we underline the potential of time-resolved 3D phase contrast MR at 3T for hemodynamic assessment of vascular pathologies, especially in the thoracic aorta.
Key words
hemodynamics/flow dynamics - vascular - aorta - aneurysm - MR imaging - velocity mapping
Literatur
- 1
Davies P F.
Flow-mediated endothelial mechanotransduction.
Physiol Rev.
1995;
75
519-560
MissingFormLabel
- 2
Langille B L, O’Donnell F.
Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent.
Science.
1986;
231
405-407
MissingFormLabel
- 3
Glagov S, Weisenberg E, Zarins C K. et al .
Compensatory enlargement of human atherosclerotic coronary arteries.
N Engl J Med.
1987;
316
1371-1375
MissingFormLabel
- 4
Cheng C, Tempel D, Haperen van R. et al .
Atherosclerotic lesion size and vulnerability are determined by patterns of fluid
shear stress.
Circulation.
2006;
113
2744-2753
MissingFormLabel
- 5
Dake M D, Miller D C, Mitchell R S. et al .
The „first generation” of endovascular stent-grafts for patients with aneurysms of
the descending thoracic aorta.
J Thorac Cardiovasc Surg.
1998;
116
689-703; discussion 703 - 704
MissingFormLabel
- 6
Doss M, Balzer J, Martens S. et al .
Surgical versus endovascular treatment of acute thoracic aortic rupture: a single-center
experience.
Ann Thorac Surg.
2003;
76
1465-1469; discussion 1469 - 1470
MissingFormLabel
- 7
Sprague E A, Steinbach B L, Nerem R M. et al .
Influence of a laminar steady-state fluid-imposed wall shear stress on the binding,
internalization, and degradation of low-density lipoproteins by cultured arterial
endothelium.
Circulation.
1987;
76
648-656
MissingFormLabel
- 8
Nerem R M.
Vascular fluid mechanics, the arterial wall, and atherosclerosis.
J Biomech Eng.
1992;
114
274-282
MissingFormLabel
- 9
Kamiya A, Togawa T.
Adaptive regulation of wall shear stress to flow change in the canine carotid artery.
Am J Physiol.
1980;
239
H14-H21
MissingFormLabel
- 10
Malek A M, Alper S L, Izumo S.
Hemodynamic shear stress and its role in atherosclerosis.
Jama.
1999;
282
2035-2042
MissingFormLabel
- 11
Tsuji T, Suzuki J, Shimamoto R. et al .
Vector analysis of the wall shear rate at the human aortoiliac bifurcation using cine
MR velocity mapping.
AJR Am J Roentgenol.
2002;
178
995-999
MissingFormLabel
- 12
Moran P R.
A flow velocity zeugmatographic interlace for NMR imaging in humans.
Magn Reson Imaging.
1982;
1
197-203
MissingFormLabel
- 13
Katoh M, Spuentrup E, Stuber M. et al .
MR-Koronarangiographie mit Inversionspuls zur Darstellung des koronaren Blutflusses.
Fortschr Röntgenstr.
2005;
177
173-178
MissingFormLabel
- 14
Jager L, Hoffmann A, Werhahn K J. et al .
Analyse und Korrektur von ballistokardiogenen EEG-Artefakten von im MR-Tomographen
aufgezeichneten EEGs.
Fortschr Röntgenstr.
2005;
177
1059-1064
MissingFormLabel
- 15
Bryant D J, Payne J A, Firmin D N. et al .
Measurement of flow with NMR imaging using a gradient pulse and phase difference technique.
J Comput Assist Tomogr.
1984;
8
588-593
MissingFormLabel
- 16
Feinberg D A, Crooks L E, Sheldon P. et al .
Magnetic resonance imaging the velocity vector components of fluid flow.
Magn Reson Med.
1985;
2
555-566
MissingFormLabel
- 17
Underwood S R, Firmin D N, Klipstein R H. et al .
Magnetic resonance velocity mapping: clinical application of a new technique.
Br Heart J.
1987;
57
404-412
MissingFormLabel
- 18
Firmin D N, Nayler G L, Klipstein R H. et al .
In vivo validation of MR velocity imaging.
J Comput Assist Tomogr.
1987;
11
751-756
MissingFormLabel
- 19
Walker M F, Souza S P, Dumoulin C L.
Quantitative flow measurement in phase contrast MR angiography.
J Comput Assist Tomogr.
1988;
12
304-313
MissingFormLabel
- 20
Pelc N J, Herfkens R J, Shimakawa A. et al .
Phase contrast cine magnetic resonance imaging.
Magn Reson Q.
1991;
7
229-254
MissingFormLabel
- 21
Pelc N J, Sommer F G, Li K C. et al .
Quantitative magnetic resonance flow imaging.
Magn Reson Q.
1994;
10
125-247
MissingFormLabel
- 22
Kunz R P, Oellig F, Krummenauer F. et al .
Anteil des frühen systolischen Flussanstiegs am antegrad fließenden Gesamtvolumen
bei Phasenkontrast-Flussmessungen in Atemanhaltetechnik.
Fortschr Röntgenstr.
2005;
177
637-645
MissingFormLabel
- 23
Schoenberg S O, Just A, Bock M. et al .
Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast
flow measurements.
Am J Physiol.
1997;
272
H2477-2484
MissingFormLabel
- 24
Schoenberg S O, Knopp M V, Bock M. et al .
Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR
blood flow measurements.
Radiology.
1997;
203
45-53
MissingFormLabel
- 25
Gutberlet M, Venz S, Kahl A. et al .
Flussquantifizierung in Hämodialyseshunts mittels Phasenkontrast-Magnetresonanzangiographie
(PC-MRA) im Vergleich zur Duplexsonographie.
Fortschr Röntgenstr.
1998;
169
163-169
MissingFormLabel
- 26
Dulce M C, Mostbeck G H, O’Sullivan M. et al .
Severity of aortic regurgitation: interstudy reproducibility of measurements with
velocity-encoded cine MR imaging.
Radiology.
1992;
185
235-240
MissingFormLabel
- 27
Kilner P J, Manzara C C, Mohiaddin R H. et al .
Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis.
Circulation.
1993;
87
1239-1248
MissingFormLabel
- 28
Kozerke S, Schwitter J, Pedersen E M. et al .
Aortic and mitral regurgitation: quantification using moving slice velocity mapping.
J Magn Reson Imaging.
2001;
14
106-112
MissingFormLabel
- 29
Kozerke S, Hasenkam J M, Nygaard H. et al .
Heart motion-adapted MR velocity mapping of blood velocity distribution downstream
of aortic valve prostheses: initial experience.
Radiology.
2001;
218
548-555
MissingFormLabel
- 30
Brenner L D, Caputo G R, Mostbeck G. et al .
Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic
resonance imaging.
J Am Coll Cardiol.
1992;
20
1246-1250
MissingFormLabel
- 31
Varaprasathan G A, Araoz P A, Higgins C B. et al .
Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded
cine MR imaging.
Radiographics.
2002;
22
895-905; discussion 905 - 906
MissingFormLabel
- 32
Wang Z J, Reddy G P, Gotway M B. et al .
Cardiovascular shunts: MR imaging evaluation.
Radiographics.
2003;
23
S181-194
MissingFormLabel
- 33
Unser M.
Splines. A Perfect Fit for Signal and Image Processing.
IEEE Signal Processing Magazine.
1999;
November
22-38
MissingFormLabel
- 34
Moore J A, Rutt B K, Karlik S J. et al .
Computational blood flow modeling based on in vivo measurements.
Ann Biomed Eng.
1999;
27
627-640
MissingFormLabel
- 35
Stalder A F, Frydrychowicz A, Canstein C. et al .
Quantitative planar analysis of flow sensitive 3D CINE MRI. In Proc: ISMRM Workshop
on Flow and Motion: Imaging Assessment of Cardiovascular and Tissue Mechanics, New
York, USA.
2006;
MissingFormLabel
- 36
Mohiaddin R H, Kilner P J, Rees S. et al .
Magnetic resonance volume flow and jet velocity mapping in aortic coarctation.
J Am Coll Cardiol.
1993;
22
1515-1521
MissingFormLabel
- 37
Steffens J C, Bourne M W, Sakuma H. et al .
Quantification of collateral blood flow in coarctation of the aorta by velocity encoded
cine magnetic resonance imaging.
Circulation.
1994;
90
937-943
MissingFormLabel
- 38
Gutberlet M, Hosten N, Vogel M. et al .
Quantification of morphologic and hemodynamic severity of coarctation of the aorta
by magnetic resonance imaging.
Cardiol Young.
2001;
11
512-520
MissingFormLabel
- 39
Pujadas S, Reddy G P, Weber O. et al .
Phase contrast MR imaging to measure changes in collateral blood flow after stenting
of recurrent aortic coarctation: initial experience.
J Magn Reson Imaging.
2006;
24
72-76
MissingFormLabel
- 40
Dinsmore R E, Wedeen V J, Miller S W. et al .
MRI of dissection of the aorta: recognition of the intimal tear and differential flow
velocities.
Am J Roentgenol.
1986;
146
1286-1288
MissingFormLabel
- 41
Bogren H G, Underwood S R, Firmin D N. et al .
Magnetic resonance velocity mapping in aortic dissection.
Br J Radiol.
1988;
61
456-462
MissingFormLabel
- 42
Chang J M, Friese K, Caputo G R. et al .
MR measurement of blood flow in the true and false channel in chronic aortic dissection.
J Comput Assist Tomogr.
1991;
15
418-423
MissingFormLabel
- 43
Strotzer M, Aebert H, Lenhart M. et al .
Morphology and hemodynamics in dissection of the descending aorta. Assessment with
MR imaging.
Acta Radiol.
2000;
41
594-600
MissingFormLabel
- 44
Kunz R P, Oberholzer K, Kuroczynski W. et al .
Assessment of chronic aortic dissection: contribution of different ECG-gated breath-hold
MRI techniques.
Am J Roentgenol.
2004;
182
1319-1326
MissingFormLabel
- 45
Bogren H G, Mohiaddin R H, Yang G Z. et al .
Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms
and grafts.
J Thorac Cardiovasc Surg.
1995;
110
704-714
MissingFormLabel
- 46
Bogren H G, Klipstein R H, Firmin D N. et al .
Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic
resonance velocity mapping.
Am Heart J.
1989;
117
1214-1222
MissingFormLabel
- 47
Kilner P J, Yang G Z, Mohiaddin R H. et al .
Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional
magnetic resonance velocity mapping.
Circulation.
1993;
88
2235-2247
MissingFormLabel
- 48
Bogren H G, Buonocore M H.
Blood flow measurements in the aorta and major arteries with MR velocity mapping.
J Magn Reson Imaging.
1994;
4
119-130
MissingFormLabel
- 49
Bogren H G, Mohiaddin R H, Klipstein R K. et al .
The function of the aorta in ischemic heart disease: a magnetic resonance and angiographic
study of aortic compliance and blood flow patterns.
Am Heart J.
1989;
118
234-247
MissingFormLabel
- 50
Bogren H G, Mohiaddin R H, Kilner P J. et al .
Blood flow patterns in the thoracic aorta studied with three-directional MR velocity
mapping: the effects of age and coronary artery disease.
J Magn Reson Imaging.
1997;
7
784-93
MissingFormLabel
- 51
Wentzel J J, Corti R, Fayad Z A. et al .
Does shear stress modulate both plaque progression and regression in the thoracic
aorta? Human study using serial magnetic resonance imaging.
J Am Coll Cardiol.
2005;
45
846-854
MissingFormLabel
- 52
Steinman D A, Taylor C A.
Flow imaging and computing: large artery hemodynamics.
Ann Biomed Eng.
2005;
33
1704-1709
MissingFormLabel
- 53
Lei M, Archie J P, Kleinstreuer C.
Computational design of a bypass graft that minimizes wall shear stress gradients
in the region of the distal anastomosis.
J Vasc Surg.
1997;
25
637-646
MissingFormLabel
- 54
Markl M, Schumacher R, Kuffer J. et al .
Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography
and rapid prototyping technology.
Magn Reson Mater Phys.
2005;
18
288-292
MissingFormLabel
- 55
Napel S, Lee D H, Frayne R. et al .
Visualizing three-dimensional flow with simulated streamlines and three-dimensional
phase-contrast MR imaging.
J Magn Reson Imaging.
1992;
2
143-153
MissingFormLabel
- 56
Buonocore M H.
Algorithms for improving calculated streamlines in 3-D phase contrast angiography.
Magn Reson Med.
1994;
31
22-30
MissingFormLabel
- 57
Bogren H G, Buonocore M H.
4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young
vs. elderly normal subjects.
J Magn Reson Imaging.
1999;
10
861-869
MissingFormLabel
- 58
Bogren H G, Buonocore M H, Valente R J.
Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the
aorta in patients with atherosclerotic coronary artery disease compared to age-matched
normal subjects.
J Magn Reson Imaging.
2004;
19
417-427
MissingFormLabel
- 59
Wigstrom L, Ebbers T, Fyrenius A. et al .
Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast
MRI.
Magn Reson Med.
1999;
41
793-799
MissingFormLabel
- 60
Wigstrom L, Sjoqvist L, Wranne B.
Temporally resolved 3D phase-contrast imaging.
Magn Reson Med.
1996;
36
800-803
MissingFormLabel
- 61
Markl M, Chan F P, Alley M T. et al .
Time-resolved three-dimensional phase-contrast MRI.
J Magn Reson Imaging.
2003;
17
499-506
MissingFormLabel
- 62
Markl M, Draney M T, Hope M D. et al .
Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization
of 3-directional blood flow patterns in healthy volunteers and patients.
J Comput Assist Tomogr.
2004;
28
459-68
MissingFormLabel
- 63
Markl M, Harloff A, Zaitsev M. et al .
Time Resolved 3D MR Velocity Mapping at 3T: Improved Navigator Gated Assessment of
Vascular Anatomy and Blood Flow.
J Magn Reson Imaging.
2007, im Druck;
MissingFormLabel
- 64
Kvitting J P, Ebbers T, Wigstrom L. et al .
Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional,
phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery.
J Thorac Cardiovasc Surg.
2004;
127
16 021-1607
MissingFormLabel
- 65
Markl M, Draney M T, Miller D C. et al .
Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow
in healthy volunteers and patients after valve-sparing aortic root replacement.
J Thorac Cardiovasc Surg.
2005;
130
456-463
MissingFormLabel
- 66
Hope M D, Levin J M, Markl M. et al .
Images in cardiovascular medicine. Four-dimensional magnetic resonance velocity mapping
in a healthy volunteer with pseudocoarctation of the thoracic aorta.
Circulation.
2004;
109
3221-3222
MissingFormLabel
- 67
Markl M, Frydrychowicz A, Harloff A. et al .
Flow Imaging of the Thoracic Aorta at 3T. In Proc: ISMRM Workshop on Flow and Motion:
Imaging Assessment of Cardiovascular and Tissue Mechanics, New York, USA.
2006;
MissingFormLabel
- 68
Lotz J, Doker R, Noeske R. et al .
In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5
T: precision, accuracy, and signal-to-noise ratios.
J Magn Reson Imaging.
2005;
21
604-610
MissingFormLabel
- 69
Michaely H J, Nael K, Schoenberg S O. et al .
Die Machbarkeit von räumlich hoch-aufgelöster Magnetresonanzangiographie (MRA) der
Nierenarterien bei 3.0 T.
Fortschr Röntgenstr.
2005;
177
800-804
MissingFormLabel
- 70
Frydrychowicz A, Weigang E, Langer M. et al .
Flow-sensitive 3D magnetic resonance imaging reveals complex blood flow alterations
in aortic Dacron graft repair.
Interact CardioVasc Thorac Surg.
2006;
5
340-342
MissingFormLabel
- 71
Frydrychowicz A, Weigang E, Harloff A. et al .
Images in cardiovascular medicine. Time-resolved 3-dimensional magnetic resonance
velocity mapping at 3 T reveals drastic changes in flow patterns in a partially thrombosed
aortic arch.
Circulation.
2006;
113
e460-461
MissingFormLabel
- 72
Frydrychowicz A, Schlensak C, Stalder A F. et al .
Ascending-Descending Aortic Bypass Surgery in Aortic Arch Coarctation: 4D MR Flow
Analysis.
J Thorac Cardiovasc Surg.
2007;
133
260-262
MissingFormLabel
- 73
Frydrychowicz A, Harloff A, Jung B. et al .
Time-Resolved 3D MR Flow Analysis at 3T: Insights into Major Hemodynamic Changes Associated
with Aortic Pathologies.
J Comput Assist Tomogr.
2007;
31
9-15
MissingFormLabel
- 74
Frydrychowicz A, Dittrich S, Bley T A. et al .
Visualisation of blood flow through a patent arterial duct using time-resolved 3-dimensional,
3-directional phase contrast CMR at 3Tesla.
Journal of Cardiovascular Magentic Resonance.
2007, im Druck;
MissingFormLabel
- 75
Gluer C C, Barkmann R, Hahn H K. et al .
Parametric Biomedical Imaging - What Defines the Quality of Quantitative Radiological
Approaches?.
Fortschr Röntgenstr.
2006;
178
1187-1201
MissingFormLabel
- 76
Buonocore M H.
Visualizing blood flow patterns using streamlines, arrows, and particle paths.
Magn Reson Med.
1998;
40
210-226
MissingFormLabel
- 77
Frydrychowicz A, Winterer J, Zaitsev M. et al .
Visualization of Femoral and Iliac Artery Hemodynamics Using Time-Resolved 3D Phase
Contrast MRI at 3T.
J Magn Reson Imaging.
2007, im Druck;
MissingFormLabel
- 78
Wetzel S, Meckel S, Frydrychowicz A. et al .
In-Vivo Assessment and Visualization of Intracranial Arterial Hemodynamics with Flow
Sensitized 4D MRI at 3T.
Am J Neuroradiol.
2007, im Druck;
MissingFormLabel
- 79
Oliver J M, Gallego P, Gonzalez A. et al .
Risk factors for aortic complications in adults with coarctation of the aorta.
J Am Coll Cardiol.
2004;
44
1641-1647
MissingFormLabel
- 80
Richter Y, Edelman E R.
Cardiology is flow.
Circulation.
2006;
113
2679-2682
MissingFormLabel
Dr. Alex Frydrychowicz
Abteilung Röntgendiagnostik, Medizin Physik, Universitätsklinikum Freiburg
Hugstetter Str. 55
79106 Freiburg
Phone: ++49/7 61/2 70 34 01
Fax: ++49/7 61/2 70 38 31
Email: alex.frydrychowicz@uniklinik-freiburg.de