Plant Biol (Stuttg) 2007; 9(5): 620-637
DOI: 10.1055/s-2007-965248
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Sulfur Metabolism in Plants: Are Trees Different?[1]

H. Rennenberg1 , C. Herschbach1 , K. Haberer1 , S. Kopriva1 , 2
  • 1Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 053/054, 79110 Freiburg, Germany
  • 2Present address: John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
Further Information

Publication History

Received: January 15, 2007

Accepted: March 23, 2007

Publication Date:
13 September 2007 (online)

Abstract

Sulfur metabolite levels and sulfur metabolism have been studied in a significant number of herbaceous and woody plant species. However, only a limited number of datasets are comparable and can be used to identify similarities and differences between these two groups of plants. From these data, it appears that large differences in sulfur metabolite levels, as well as the genetic organization of sulfate assimilation and metabolism do not exist between herbaceous plants and trees. The general response of sulfur metabolism to internal and/or external stimuli, such as oxidative stress, seems to be conserved between the two groups of plants. Thus, it can be expected that, generally, the molecular mechanisms of regulation of sulfur metabolism will also be similar. However, significant differences have been found in fine tuning of the regulation of sulfur metabolism and in developmental regulation of sulfur metabolite levels. It seems that the homeostasis of sulfur metabolism in trees is more robust than in herbaceous plants and a greater change in conditions is necessary to initiate a response in trees. This view is consistent with the requirement for highly flexible defence strategies in woody plant species as a consequence of longevity. In addition, seasonal growth of perennial plants exerts changes in sulfur metabolite levels and regulation that currently are not understood. In this review, similarities and differences in sulfur metabolite levels, sulfur assimilation and its regulation are characterized and future areas of research are identified.

1 Dedicated to Prof. Dr. L. Bergmann at the occasion of his 80th birthday.

References

  • 1 Alexou M., Hofer N., Liu X. P., Rennenberg H., Haberer K.. Significance of ozone exposure for inter-annual differences in primary metabolites of old-growth beech (Fagus sylvatica) and Norway spruce (Picea abies) trees in a mixed forest stand.  Plant Biology. (2007);  9 227-241
  • 2 Arisi A.-C. M., Noctor G., Foyer C. H., Jouanin L.. Modification of thiol contents in poplars (Populus tremula × P. alba) overexpressing enzymes involved in glutathione synthesis.  Planta. (1997);  203 362-372
  • 3 Asada K.. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.  Annual Review of Plant Physiology and Plant Molecular Biology. (1999);  50 601-639
  • 4 Baier M., Kandlbinder A., Golldack D., Dietz K. J.. Oxidative stress and ozone: perception, signalling and response.  Plant, Cell and Environment. (2005);  28 1012-1020
  • 5 Bolchi A., Petrucco S., Tenca P. L., Foroni C., Ottonello S.. Coordinate modulation of maize sulphate permease and ATP sulphurylase mRNAs in response to variations in sulphur nutritional status: stereospecific down regulation by L-cysteine.  Plant Molecular Biology. (1999);  39 527-537
  • 6 Ball L., Accotto G.-P., Bechtold U., Creissen G., Funck D., Jimenez A., Kular B., Leyland N., Mejia-Carranza J., Reynolds H., Karpinski S., Mullineeaux P. M.. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis.  Plant Cell. (2004);  16 2448-2462
  • 7 Baumbusch L. O., Eiblmeier M., Schnitzler J. P., Heller W., Sandermann H., Polle A.. Interactive effects of ozone and Pow UV‐B radiation on antioxidants in spruce (Picea abies) and pine (Pinus sylvestris) needles.  Physiologia Plantarum. (1998);  104 248-254
  • 8 Benning C.. Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol.  Annual Review of Plant Physiology and Plant Molecular Biology. (1998);  49 53-75
  • 9 Bick J. A., Setterdahl A. T., Knaff D. B., Chen Y., Pitcher L. H., Zilinskas B. A., Leustek T.. Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress.  Biochemistry. (2001);  40 9040-9048
  • 10 Blaschke L., Schneider A., Herschbach C., Rennenberg H.. Reduced sulfur allocation from three-year-old needles of Norway spruce (Picea abies [Karst] L.).  Journal of Experimental Botany. (1996);  47 1025-1032
  • 11 Blaszczyk A., Brodzik R., Sirko A.. Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase.  The Plant Journal. (1999);  20 237-243
  • 12 Blaszczyk A., Sirko L., Hawkesford M. J., Sirko A.. Biochemical analysis of transgenic tobacco lines producing bacterial serine acetyltransferase.  Plant Science. (2002);  162 589-597
  • 13 Booker F. L., Fiscus E. L.. The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean.  Journal of Experimental Botany. (2005);  56 2139-2151
  • 14 Bourgis F., Roje S., Nuccio M. L., Fisher D. B., Tarczynski M. C., Li C., Herschbach C., Rennenberg H., Pimenta M. J., Shen T.-L., Gage D. A., Hanson A. D.. S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase.  Plant Cell. (1999);  11 1485-1497
  • 15 Bräuning H., Pahlich E., Muller C., Jager H. J.. Changes of the redox status of glutathione and ascorbate in leaves and apoplast of Phaseolus vulgaris cultivars under ozone stress.  Phyton - Annales Rei Botanicae. (2005);  45 279-293
  • 16 Brunner A. M., Busov V. B., Strauss S. H.. Poplar genome sequence: functional genomics in an ecologically dominant plant species.  Trends in Plant Science. (2004);  9 49-56
  • 17 Brunold C., Landolt W., Lavanchy P.. SO2 and assimilatory sulfate reduction in beech leaves.  Physiologia Plantarum. (1983);  59 313-318
  • 18 Burkey K. O., Wei C. M., Eason G., Ghosh P., Fenner G. P.. Antioxidant metabolite levels in ozone-sensitive and tolerant genotypes of snap bean.  Physiologia Plantarum. (2000);  110 195-200
  • 19 Cairns N. G., Pasternak M., Wachter A., Cobbett C. S., Meyer A. J.. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo.  Plant Physiology. (2006);  141 446-455
  • 20 Calatayud A., Iglesias D. J., Talon M., Barreno E.. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation.  Plant Physiology and Biochemistry. (2003);  41 839-845
  • 21 Calatayud A., Iglesias D. J., Talón M., Barreno E.. Response of spinach leaves (Spinacia oleracea L.) to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation.  Photosynthetica. (2004);  42 23-29
  • 22 Cataldo F.. On the action of ozone on proteins.  Polymer Degradation and Stability. (2003);  82 105-114
  • 23 Chalot M., Brunn A.. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas.  FEMS Microbiology Reviews. (1998);  22 21-44
  • 24 Cheng J.-C., Seeley K. A., Sung Z. R.. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip.  Plant Physiology. (1995);  107 365-376
  • 25 Chung H. G., Zak D. R., Lilleskov E. A.. Fungal community composition and metabolism under elevated CO2 and O3.  Oecologia. (2006);  147 143-154
  • 26 Cobbett C. S., May M. J., Howden R., Rolls B.. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase.  The Plant Journal. (1998);  16 73-78
  • 27 Creissen G., Firmin J., Freyer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P.. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress.  Plant Cell. (1999);  11 1277-1291
  • 28 Creissen G., Firmin J., Freyer M., Kular B., Leyland N., Reynolds H., Pastori G., Wellburn F., Baker N., Wellburn A., Mullineaux P.. Correction: elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress.  Plant Cell. (2000);  12 301
  • 29 De Kok L. J., Stuiver C. E. E., Rubinigg M., Westerman S., Grill D.. Impact of atmospheric sulphur deposition on sulphur metabolism in plants: H2S as sulphur source for sulphur deprived Brassica oleracea L.  Botanica Acta. (1997);  110 411-419
  • 30 Diara C., Castagna A., Baldan B., Sodi A. M., Sahr T., Langebartels C., Sebastiani L., Ranieri A.. Differences in the kinetics and scale of signalling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid.  New Phytologist. (2005);  168 351-364
  • 31 Do Amarante L., Lima J. D., Sodek L.. Growth and stress conditions cause similar changes in xylem amino acids for different legume species.  Environmental and Experimental Botany. (2006);  58 123-129
  • 32 Driessche van der R., Langebartels C.. Foliar symptoms, ethylene biosynthesis and water-use of young Norway spruce (Picea abies [L] Karst) exposed to drought and ozone.  Water, Air and Soil Pollution. (1994);  78 153-168
  • 33 Durenkamp M., De Kok L. J.. Impact of pedospheric and atmospheric sulfur nutrition on sulfur metabolism of Allium cepa L., a species with a potential sink capacity for secondary sulfur compounds.  Journal of Experimental Botany. (2004);  55 1821-1830
  • 34 Edwards G. S., Kelly J. M.. Ectomycorrhizal colonization of Loblolly-pine seedlings during 3 growing seasons in response to ozone, acidic precipitation, and soil Mg status.  Environmental Pollution. (1992);  76 71-77
  • 35 Espunya M. C., Dáz M., Moreno-Romero J., Martínez M. C.. Modification of intracellular levels of glutathione-dependent formaldehyde dehydrogenase alters glutathione homeostasis and root development.  Plant, Cell and Environment. (2006);  29 1002-1011
  • 36 Esterbauer H., Grill D.. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies.  Plant Physiology. (1978);  61 119-121
  • 37 Fahey J. W., Zalcmann A. T., Talaly P.. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.  Phytochemistry. (2001);  56 5-51
  • 38 Foyer C. H., Noctor G.. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context.  Plant, Cell and Environment. (2005);  28 1056-1071
  • 39 Foyer C., Souriau N., Perret S., Lelandais M., Kunert K.-J., Pruvost C., Jouanin L.. Overexpression of glutathione reductase bit not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.  Plant Physiology. (1995);  109 1047-1057
  • 40 Fricker M. D., May M., Meyer A. J., Sheard N., White N. S.. Measurement of glutathione levels in intact roots of Arabidopsis.  Journal of Microscopy. (2000);  198 162-173
  • 41 Geßler A., Schneider S., von Sengbusch D., Weber P., Hanemann U., Huber A., Rothe A., Kreutzer K., Rennenberg H.. Field and laboratory experiments on net uptake of nitrate and ammonium by roots of spruce (Picea abies) and beech (Fagus sylvatica) trees.  New Phytologist. (1998);  138 275-285
  • 42 Gómez L. D., Vanacker H., Buchner P., Noctor G., Foyer C. H.. Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling.  Plant Physiology. (2004 a);  134 1662-1671
  • 43 Gómez L. D., Noctor G., Knight M. R., Foyer C. H.. Regulation of calcium signalling and gene expression by glutathione.  Journal of Experimental Botany. (2004 b);  55 1851-1859
  • 44 Gupta A. S., Alscher R. G., McCune D.. Response of photosynthesis and cellular antioxidants to ozone in Populus leaves.  Plant Physiology. (1991);  96 650-655
  • 45 Gupta P., Duplessis S., White H., Karnosky D. F., Martin F., Podila G. K.. Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and troposphere O3.  New Phytologist. (2005);  167 633
  • 46 Gutiérrez-Alcalá G., Gotor C., Mejer A. J., Fricker M., Vega J. M., Romero L. C.. Glutathione biosynthesis in Arabidopsis trichome cells.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 11108-11113
  • 47 Guzy M. R., Heath R. L.. Responses to ozone of varieties of common bean (Phaseolus vulgaris L).  New Phytologist. (1993);  124 617-625
  • 48 Haberer K., Grebenc T., Alexou M., Gessler A., Kraigher H., Rennenberg H.. Effects of long-term free-air ozone fumigation on d15N and total N in Fagus sylvatica and associated mycorrhizal fungi.  Plant Biology. (2007 a);  9 242-252
  • 49 Haberer K., Herbinger K., Alexou M., Tausz M., Rennenberg H.. Antioxidative defence of old growth beech (Fagus sylvatica) under elevated O3 in a free air exposure system.  Plant Biology. (2007 b);  9 215-226
  • 50 Hänsch R., Lang C., Rennenberg H., Mendel R. R.. Significance of plant sulfite oxidase.  Plant Biology. (2007);  9 589-595
  • 51 Hänsch R., Lang C., Riebeseel E., Lindigkeit R., Gessler A., Rennenberg H., Mendel R. R.. Plant sulfite oxidase as novel producer of H2O2 - combination of enzyme catalysis with a subsequent non-enzymatic reaction step.  Journal of Biological Chemistry. (2006);  281 6884-6888
  • 52 Harada E., Choi Y.-E., Tsuchisaka A., Obata H., Sano H.. Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium.  Journal of Plant Physiology. (2001);  158 655-661
  • 53 Harms K., von Ballmoos P., Brunold C., Höfgen R., Hesse H.. Expression of a bacterial serine acetyl transferase in transgenic potato plants leads to increased levels of cysteine and glutathione.  The Plant Journal. (2000);  22 335-343
  • 54 Hartmann T. N., Fricker M. D., Rennenberg H., Meyer A. J.. Cell-specific measurement of cytosolic glutathione in poplar leaves.  Plant, Cell and Environment. (2003);  26 965-975
  • 55 Hartmann T., Hönicke P., Wirtz M., Hell R., Rennenberg H., Kopriva S.. Regulation of sulfate assimilation by glutathione in poplars (Populus tremula × P. alba) of wild type and overexpressing γ-glutamylcysteine synthetase in the cytosol.  Journal of Experimental Botany. (2004 a);  55 837-845
  • 57 Hartmann T., Mult S., Suter M., Rennenberg H., Herschbach C.. Leaf age-dependent differences in sulfur assimilation and allocation in poplar (Populus tremula × P. alba) leaves.  Journal of Experimental Botany. (2000);  51 1077-1088
  • 58 Heath R. L.. Initial events in injury to plants by air pollutants.  Annual Review of Plant Physiology. (1981);  31 395-431
  • 59 Henmi K., Demura T., Tsuboi S., Fukuda H., Iwabuchi M., Ogawa K.. Change in the redox state of glutathione regulates differentiation of tracheary elements in Zinnia Cells and Arabidopsis roots.  Plant Cell Physiology. (2005);  46 1757-1765
  • 60 Henmi K., Tsuboi S., Demura T., Fukuda H., Iwabuchi M., Ogawa K.. A possible role of glutathione and glutathione disulfide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans.  Plant Cell Physiology. (2001);  42 673-676
  • 61 Herbinger K., Tausz M., Wonisch A., Soja G., Sorger A., Grill D.. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars.  Plant Physiology and Biochemistry. (2002);  40 691-696
  • 62 Herbinger K., Then C., Löw M., Haberer K., Alexou M., Koch N., Remele K., Heerdt C., Grill D., Rennenberg H., Häberle K. H., Matyssek R., Tausz M., Wieser G.. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure.  Environmental Pollution. (2005);  137 476-482
  • 63 Herschbach C.. Sulfur nutrition of deciduous trees at different environmental growth conditions. Davidian, J.-C., Grill, D., De Kok, L. J., Stulen, H., Hawkesford, M. J., Schnug, E., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants: Regulation, Interaction, Signaling. Leiden; Backhuys Publishers (2003): 111-119
  • 64 Herschbach C., Kopriva S.. Transgenic trees as tools in tree and plant physiology.  Trees. (2002);  16 250-261
  • 65 Herschbach C., Rennenberg H.. Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants.  Journal of Experimental Botany. (1994);  45 1069-1076
  • 66 Herschbach C., Rennenberg H.. Sulfur nutrition of deciduous trees.  Naturwissenschaften. (2001);  88 25-36
  • 67 Herschbach C., De Kok L. J., Rennenberg H.. Net uptake of sulfate and its transport to the shoot in spinach plants fumigated with H2S or SO2: does atmospheric sulfur affect the “inter-organ” regulation of sulfur nutrition.  Botanica Acta. (1995);  108 41-46
  • 68 Herschbach C., Jouanin L., Rennenberg H.. Overexpression of γ-glutamylcysteine synthetase, but not of glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees.  Plant Cell Physiology. (1998);  39 447-451
  • 69 Herschbach C., van der Zalm E., Schneider A., Jouanin L., De Kok L. J., Rennenberg H.. Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S.  Plant Physiology. (2000);  124 461-473
  • 70 Hopkins L., Parmar S., Blaszczyk A., Hesse H., Hoefgen H., Hawkesford M. J.. O-Acetylserine and the regulation of expression of genes encoding components for sulphate uptake and assimilation in potato.  Plant Physiology. (2005);  138 433-440
  • 71 Howden R., Andersen C. R., Goldsbrough P. B., Cobbett C. S.. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.  Plant Physiology. (1995 b);  107 1067-1073
  • 72 Howden R., Goldsbrough P. B., Andersen C. R., Cobbett C. S.. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatine deficient.  Plant Physiology. (1995 a);  107 1059-1066
  • 73 Jehnes S., Betz G., Bahnweg G., Haberer K., Sandermann H., Rennenberg H.. Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees.  Plant Biology. (2007);  9 253-264
  • 74 Jost R., Altschmied L., Bloem E., Bogs J., Gershenzon J., Hahnel U., Hänsch R., Hartmann T., Kopriva S., Kruse C., Mendel R. R., Papenbrock J., Reichelt M., Rennenberg H., Schnug E., Schmidt A., Textor S., Tokuhisa J., Wachter A., Wirtz M., Rausch T., Hell R.. Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana.  Photosynthesis Research. (2005);  86 491-508
  • 75 Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R.. Plant defense systems induced by ozone.  Plant, Cell and Environment. (1994);  17 783-794
  • 76 Koch J. R., Creelman R. A., Eshita S. M., Seskar M., Mullet J. E., Davis K. R.. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.  Plant Physiology. (2000);  123 487-496
  • 77 Kopriva S.. Regulation of sulfate assimilation in Arabidopsis and beyond.  Annals of Botany. (2006);  97 479-495
  • 78 Kopriva S., Koprivova A.. Plant adenosine 5′-phosphosulfate reductase: the past, the present, and the future.  Journal of Experimental Botany. (2004);  55 1775-1783
  • 79 Kopriva S., Rennenberg H.. Control of sulfate assimilation and glutathione synthesis: interaction with N and C metabolism.  Journal of Experimental Botany. (2004);  55 1831-1842
  • 80 Kopriva S., Hartmann T., Massaro G., Hönicke P., Rennenberg H.. Regulation of sulfate assimilation by nitrogen and sulfur nutrition in poplar trees.  Trees. (2004);  18 320-326
  • 81 Kopriva S., Jones S., Koprivova A., Suter M., von Ballmoos P., Brander K., Flücker J., Brunold C.. Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays.  Plant Biology. (2001);  3 24-31
  • 82 Kopriva S., Suter M., von Ballmoos P., Hesse H., Krähenbühl U., Rennenberg H., Brunold C.. Interaction of sulphate assimilation with carbon and nitrogen in Lemna minor.  Plant Physiology. (2002);  130 1406-1413
  • 83 Koprivova A., Meyer A., Schween G., Herschbach C., Reski R., Kopriva S.. Functional knockout of the adenosine 5′-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.  Journal of Biological Chemistry. (2002);  277 32195-32201
  • 84 Koprivova A., Suter M., Op den Camp R., Brunold C., Kopriva S.. Regulation of sulfate assimilation by nitrogen in Arabidopsis.  Plant Physiology. (2000);  122 737-746
  • 85 Köstner B., Schupp R., Schulze E.-D., Rennenberg H.. Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees.  Tree Physiology. (1998);  18 1-9
  • 86 Kozlowski T. T.. Growth and Development of Trees. New York, London; Academic Press (1971) Vol. I: 213-230 Vol. II: 219-224 320-330
  • 87 Kreuzwieser J., Herschbach C., Rennenberg H.. Sulfate uptake by mycorrhizal (Laccaria laccata) and non-mycorrhizal roots of beech (Fagus sylvatica) trees. Cram, W., De Kok, L. J., Stulen, I., Brunold, C., and Rennenberg, H., eds. Sulfur Metabolism in Higher Plants. Leiden; Backhuys Publishers (1997 b): 165-168
  • 88 Kreuzwieser J., Herschbach C., Stulen I., Wiersema P., Vaalburg W., Rennenberg H.. Interactions of ammonium with nitrate transport processes of non-mycorrhizal beech (Fagus sylvatica L.) roots.  Journal of Experimental Botany. (1997 a);  48 1431-1438
  • 89 Kuzuhara Y., Isobe A., Awazuhara M., Fujiwara T., Hayashi H.. Glutathione levels in phloem sap of rice plants under sulfur deficient conditions.  Soil Science and Plant Nutrition. (2000);  46 265-270
  • 90 Laisk A., Kull O., Moldau H.. Ozone concentration in leaf intercellular air spaces is close to zero.  Plant Physiology. (1989);  90 1163-1167
  • 91 Langebartels C., Kangasjärvi J.. Ethylen and jasmonate as regulators of cell death in desease resistance. Sandermann, H., ed. Molecular Ecotoxicology of Plants. Berlin, Heidelberg; Springer Verlag (2004): 75-109
  • 92 Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller W., Sandermann H.. Biochemical plant responses to ozone. 1. Differential induction of polyamine and ethylene biosynthesis in Tobacco.  Plant Physiology. (1991);  95 882-889
  • 93 Lappartient A. G., Touraine B.. Demand-driven control of root ATP sulphurylase activity and SO4 2- uptake in intact canola. The role of phloem-translocated glutathione.  Plant Physiology. (1996);  111 147-157
  • 94 Lappartient A. G., Vidmar J. J., Leustek T., Glass A. D. M., Touraine B.. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound.  The Plant Journal. (1999);  18 89-95
  • 95 Leustek T., Martin M. N., Bick J. A., Davies J. P.. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies.  Annual Review of Plant Physiology and Plant Molecular Biology. (2000);  51 141-165
  • 96 Levine R. L., Berlett B. S., Moskovitz J., Mosoni L., Stadtman E. R.. Methionine residues may protect proteins from critical oxidative damage.  Mechanisms of Ageing and Development. (1999);  107 323-332
  • 97 Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R.. Methionine residues as endogenous antioxidants in proteins.  Proceedings of the National Academy of Sciences of the USA. (1996);  93 15036-15040
  • 98 Li Y., Dankher O. P., Carreira L., Smith A. P., Meagher R. B.. The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic.  Plant Physiology. (2006);  141 288-298
  • 99 Liu X. P., Grams T. E. E., Matyssek R., Rennenberg H.. Effects of elevated pCO2 and/or pO3 on C-, N-, and S-metabolites in the leaves of juvenile beech and spruce differ between trees grown in monoculture and mixed culture.  Plant Physiology and Biochemistry. (2005);  43 147-154
  • 100 Lohman K. N., Gan S. S., John M. C., Amasino R. M.. Molecular analysis of natural leaf senescence in Arabidopsis thaliana.  Physiologia Plantarum. (1994);  92 322-328
  • 192 Loudet O., Saliba-Colombani V., Camilleri C., Calenge F., Gaudon V., Koprivova A., North K. A., Kopriva S., Daniel-Vedele F.. Natural variation for sulfate content in Arabidopsis is higly controlled by adenosine 5′-phosphosulfate reductase.  Nature Genetics. (2007); 
  • 101 Luwe M.. Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air.  Plant, Cell and Environment. (1996);  19 321-328
  • 102 Luwe M., Heber U.. Ozone Detoxification in the apoplasm and symplasm of spinach, broad bean and beech leaves at ambient and elevated concentrations of ozone in air.  Planta. (1995);  197 448-455
  • 103 Lyons T., Ollerenshaw J. H., Barnes J. D.. Impacts of ozone on Plantago major: apoplastic and symplastic antioxidant status.  New Phytologist. (1999);  141 253-263
  • 104 Marco F., Carrasco P.. Expression of the pea S-adenosylmethionine decarboxylase gene is involved in developmental and environmental responses.  Planta. (2002);  214 641-647
  • 105 Martin M. N., Tarczynski M. C., Shen B., Leustek T.. The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants.  Photosynthesis Research. (2005);  86 309-323
  • 106 Matityahu I., Kachan L., Ilan I. B., Amir R.. Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibited enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress.  Amino Acids. (2006);  30 185-194
  • 107 Mckee I. F., Eiblmeier M., Polle A.. Enhanced ozone-tolerance in wheat grown at an elevated CO2 concentration: ozone exclusion and detoxification.  New Phytologist. (1997);  137 275-284
  • 108 Mehlhorn H., Tabner B. J., Wellburn A. R.. Electron-spin-resonance evidence for the formation of free radicals in plants exposed to ozone.  Physiologia Plantarum. (1990);  79 377-383
  • 109 Meyer A. J., Fricker M. D.. Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy.  Journal of Microscopy. (2000);  198 174-181
  • 110 Meyer A. J., Fricker M. D.. Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells.  Plant Physiology. (2002);  130 1927-1937
  • 111 Meyer A. J., May M. J., Fricker M.. Quantitative in vivo measurements of glutathione in Arabidopsis cells.  The Plant Journal. (2001);  27 67-78
  • 112 Millard P., Wendler R., Grassi G., Grelet G. A., Tagliavini M.. Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization.  Tree Physiology. (2006);  26 527-536
  • 113 Müller M., Zechmann B., Zellnig G.. Ultrastructural localization of glutathione in Curcurbita pepo plants.  Protoplasma. (2004);  223 213-219
  • 114 Mullineaux P., Creissen G., Broadbent P., Kular B., Wellburn A.. Elucidation of the role of glutathione reductase using transgenic plants.  Biochemical Society Transaction. (1994);  22 931-936
  • 115 Nawy T., Lee J. Y., Colinas J., Wang J. Y., Thongrod S. C., Malamy J. E., Birnbaum K., Benfey P. N.. Transcriptional profile of the Arabidopsis root quiescent center.  Plant Cell. (2005);  17 1908-1925
  • 116 Noctor G., Foyer C. H.. Ascorbate and glutathione: keeping active oxygen under control.  Annual Review of Plant Physiology and Plant Molecular Biology. (1998);  49 249-279
  • 117 Noctor G., Arisi A.-C. M., Jouanin L., Foyer C. H.. Manipulation of glutathione and amino acid biosynthesis in the chloroplast.  Plant Physiology. (1998);  118 471-482
  • 118 Noctor G., Arisi A.-C. M., Jouanin L., Foyer C. H.. Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments.  Journal of Experimental Botany. (1999);  50 1157-1167
  • 119 Noctor G., Gomez L., Vanacker H., Foyer C. H.. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling.  Journal of Plant Biology. (2002);  53 1283-1304
  • 120 Noctor G., Strohm M., Jouanin L., Kunert K.-J., Foyer C. H., Rennenberg H.. Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase.  Plant Physiology. (1996);  112 1071-1078
  • 121 Ogawa K., Hatano-Iwasaki A., Yanagida M., Iwabuchi M.. Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering.  Plant Cell Physiology. (2004);  45 1-8
  • 122 Ogawa K., Tasaka Y., Mino M., Tanaka Y., Iwabuchi M.. Association of glutathione with flowering in Arabidopsis thaliana.  Plant Cell Physiology. (2001);  42 524-530
  • 123 Ohkama-Ohtsu N., Kasajima I., Fujiwara T., Naito S.. Isolation and characterization of an Arabidopsis mutant that overaccumulates O-acetyl-L‐Ser.  Plant Physiology. (2004);  136 3209-3222
  • 124 Olbrich M., Betz G., Gerstner E., Langebartels C., Sandermann H., Ernst D.. Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.).  Plant Biology. (2005);  7 670-676
  • 125 Overmyer K., Tuominen H., Kettunen R., Betz C., Langebartels C., Sandermann H., Kangasjärvi J.. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death.  Plant Cell. (2000);  12 1849-1862
  • 126 Pasqualini S., Batini P., Ederli L., Porceddu A., Piccioni C., De Marchis F., Antonielli M.. Effects of short-term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase.  Plant, Cell and Environment. (2001);  24 245-252
  • 127 Pilon-Smits A. A. H., Hwang S., Lytle C. M., Zhu Y., Tai J. C., Bravo R. C., Chen Y., Leustek T., Terry N.. Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance.  Plant Physiology. (1999);  119 123-132
  • 128 Pino M. E., Mudd J. B., Baileyserres J.. Ozone-induced alterations in the accumulation of newly synthesized proteins in leaves of maize.  Plant Physiology. (1995);  108 777-785
  • 129 Piquery L., Huault C., Billard J.-P.. Ascorbate-glutathione cycle and H2O2 detoxification in elongating leaf bases of ryegrass: effect of inhibition of glutathione reductase activity on foliar regrowth.  Physiologia Plantarum. (2002);  116 406-415
  • 130 Polle A., Rennenberg H.. Field studies on Norway spruce trees at high altitudes. 2. Defense systems against oxidative stress in needles.  New Phytologist. (1992);  121 635-642
  • 131 Polle A., Eiblmeier M., Rennenberg H.. Sulfate and antioxidants in needles of Scots pine (Pinus sylvestris L.) from three SO2-polluted field sites in eastern Germany.  New Phytologist. (1994);  127 571-577
  • 132 Poortinga A. M., De Kok L. J.. Sulfate and thiol levels in roots and shoot of sulfur-deprived spinach plants as affected by high pedospheric sulfate levels.  Phyton. (2000);  40 95-102
  • 133 Qiu Z., Chappelka A. H., Somers G. L., Lockaby B. G., Meldahl R. S.. Effects of ozone and simulated acidic precipitation on ectomycorrhizal formation on Loblolly pine seedlings.  Environmental and Experimental Botany. (1993);  33 423-431
  • 134 Rao M. V., Lee H., Davis K. R.. Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death.  The Plant Journal. (2002);  32 447-456
  • 135 Rao M. V., Lee H., Creelman R. A., Mullet J. E., Davis K. R.. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.  Plant Cell. (2000);  12 1633-1646
  • 136 Rausch T., Wachter A.. Sulfur metabolism: a versatile platform for launching defence operations.  Trends in Plant Science. (2005);  10 503-509
  • 137 Rennenberg H.. Glutathione metabolism and possible biological roles in higher-plants.  Phytochemistry. (1982);  21 2771-2781
  • 138 Rennenberg H.. The significance of ectomycorrhizal fungi for sulfur nutrition of trees.  Plant and Soil. (1999);  215 115-122
  • 139 Rennenberg H., Schupp R., Glavac V., Jochheim H.. Xylem sap composition of beech (Fagus sylvatica L.) trees: seasonal changes in the axial distribution of sulfur compounds.  Tree Physiology. (1994);  14 541-548
  • 140 Rolland F., Baena-Gonzalez E., Sheen J.. Sugar sensing and signaling in plants: conserved and novel mechanisms.  Annual Review of Plant Biology. (2006);  57 675-709
  • 141 Romero H. M., Berlett B. S., Jensen P. J., Pell E. J., Tien M.. Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis.  Plant Physiology. (2004);  136 3784-3794
  • 193 Ruiz J. M., Blumwald E.. Salinity-induced glutathione synthesis in Brassica napus.  Planta. (2002);  214 965-969
  • 142 Saito K., Kurosawa M., Tatsuguchi K., Takagi Y., Murakoshi I.. Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase (O-acetylserine[thiol]-lyase).  Plant Physiology. (1994);  106 887-895
  • 143 Sánchez-Fernández R., Fricker M., Corben L. B., White N. S., Sheard N., Leaver C. J., Van Montagu M., Inzé D., May M. J.. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 2745-2750
  • 144 Sandermann H., Ernst D., Heller W., Langebartels C.. Ozone: an abiotic elicitor of plant defence reactions.  Trends in Plant Science. (1998);  3 47-50
  • 145 Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., Suzuki H., Hirai M. Y., Noji M., Saito K., Masuda T., Takamiya K., Shibata D., Ohta H.. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis.  The Plant Journal. (2005);  44 653-668
  • 146 Sato T., Yashima H., Ohtake N., Sueyoshi K., Akao S., Harper J. E., Ohyama T. determination of leghemoglobin components and xylem sap composition by capillary electrophoresis in hypernodulation soybean mutants cultivated in the field.  Soil Science and Plant Nutrition. (1998);  44 635-645
  • 147 Schneider A., Kreuzwieser J., Schupp R., Sauter J. J., Rennenberg H.. Thiol and amino acid composition of the xylem sap of poplar trees (Populus × canadensis “robusta”).  Canadian Journal of Botany. (1994 b);  72 347-351
  • 148 Schneider A., Schatten T., Rennenberg H.. Exchange between phloem and xylem during long-distance transport of glutathione in spruce trees (Picea abies [Karst.] L.).  Journal of Experimental Botany. (1994 a);  45 457-462
  • 149 Schulte M., Herschbach C., Rennenberg H.. Long term effects of naturally elevated CO2, H2S and SO2 on sulfur allocation in Quercus. Cram, W. J., De Kok, L. J., Stulen, I., Brunold, C., and Rennenberg, H., eds. Sulphur Metabolism in Higher Plants. Leiden; Backhuys Publishers (1997): 289-291
  • 150 Schulte M., von Ballmoos P., Rennenberg H., Herschbach C.. Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulfur, nitrogen and carbohydrate metabolism of the progeny to elevated pCO2.  Plant, Cell and Environment. (2002);  25 1715-1727
  • 151 Schupp R., Rennenberg H.. Changes in sulfur metabolism during needle development of Norway Spruce.  Botanica Acta. (1992);  105 180-189
  • 152 Schupp R., Glavac V., Rennenberg H.. Thiol composition of xylem sap of beech trees.  Phytochemistry. (1991);  30 1415-1418
  • 153 Schupp R., Schatten T., Willenbrink J., Rennenberg H.. Long-distance transport of reduced sulphur in spruce (Picea abies L.).  Journal of Experimental Botany. (1992);  43 1243-1250
  • 154 Seegmüller S., Rennenberg H.. Transport of organic sulfur and nitrogen in the roots of young mycorrhizal pedunculate oak trees (Quercus robur L.).  Plant and Soil. (2002);  242 291-297
  • 155 Seegmüller S., Schulte M., Herschbach C., Rennenberg H.. Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees.  Plant, Cell and Environment. (1996);  19 418-426
  • 156 Smith S. E., Read D. J.. Mycorrhizal Symbiosis, 2nd ed. San Diego; Academic Press (1997)
  • 157 Solomon M., Belenghi B., Delledonne M., Menachem E., Levine A.. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants.  Plant Cell. (1999);  11 431-443
  • 158 Storozhenko S., Belles-Boix E., Babiychuk E., Hérouart D., Davey M. W., Slooten L., Van Montagu M., Inzé D., Kushnir S.. γ-Glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, prozessing, and biochemical properties.  Plant Physiology. (2002);  128 1109-1119
  • 159 Ströher E., Dietz K.-J.. Concepts and approaches towards understanding the cellular redox proteome.  Plant Biology. (2006);  8 407-418
  • 160 Strohm M., Eiblmeier M., Langebartels C., Jouanin L., Polle A., Sandermann H., Rennenberg H.. Responses of antioxidative systems to acute ozone stress in transgenic poplar (Populus tremula × P. alba) over-expressing glutathione synthetase or glutathione reductase.  Trees. (2002);  16 262-273
  • 161 Strohm M., Jouanin L., Kunert K.-J., Pruvost C., Polle A., Foyer C. H., Rennenberg H.. Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase.  The Plant Journal. (1995);  7 141-145
  • 162 Suter M., Tschanz A., Brunold C.. Adenosine 5′-phosphosulfate sulfotransferase from norway spruce - biochemical and physiological properties.  Botanica Acta. (1992);  105 190-196
  • 163 Tabor C. W., Tabor H.. Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase.  Advances in Enzymology and Related Areas of Molecular Biology. (1984);  56 251-282
  • 164 Tamaoki M., Matsuyama T., Kanna M., Nakajima N., Kubo A., Aono M., Saji H.. Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis.  Planta. (2003);  216 552-560
  • 165 Taulavuori E., Taulavuori K., Laine K.. seasonality of glutathione dynamics in Scots Pine and Bilberry.  Plant Biology. (1999);  1 187-191
  • 166 Taulavuori E., Taulavuori K., Laine K., Pakonen T., Saari E.. Winter hardening and glutathione status in the bilberry (Vaccinium myrtillus) in response to trace gases (CO2, O3) and nitrogen fertilization.  Physiologia Plantarum. (1997);  101 192-198
  • 167 Tausz M., Olszyk D. M., Monschein S., Tingey D. T.. Combined effects of CO2 and O3 on antioxidative and photoprotective defense systems in needles of ponderosa pine.  Biologia Plantarum. (2004 a);  48 543-548
  • 168 Tausz M., Šircelj H., Grill D.. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?.  Journal of Experimental Botany. (2004 b);  55 1955-1962
  • 169 Teyker R. H., Galerani P. R., Nafziger E. D.. Analysis of xylem exudate by ion chromatography - influence of nitrogen and residue managment on corn exudate composition.  Communications in Soil Science and Plant Analysis. (1991);  22 785-793
  • 170 Tingey D. T., Standley C., Field R. W.. Stress ethylene evolution - measure of ozone effects on plants.  Atmospheric Environment. (1976);  10 969-974
  • 171 Tsakraklides G., Martin M., Chalam R., Tarczynski M. C., Schmidt A., Leustek T.. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5′-adenylylsulfate reductase from Pseudomonas aeruginosa.  The Plant Journal. (2002);  32 879-889
  • 172 Tschanz A., Landolt W., Bleuler P., Brunold C.. Effect of SO2 on the activity of adenosine 5′-phosphosulfate sulfotransferase from spruce trees (Picea abies) in fumigation chambers and under field conditions.  Physiologia Plantarum. (1986);  67 235-241
  • 173 Vahala J., Keinanen M., Schutzendubel A., Polle A., Kangasjarvi J.. Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid.  Plant Physiology. (2003);  132 196-205
  • 174 Vauclare P., Kopriva S., Fell D., Suter M., Sticher L., von Ballmoos P., Krähenbühl U., Op den Camp R., Brunold C.. Flux control of sulfate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulfate reductase is more susceptible to negative control by thiols than ATP sulphurylase.  The Plant Journal. (2002);  31 729-740
  • 175 Vernoux T., Wilson R. C., Seeley K. A., Reichheld J.-P., Muroy S., Brown S., Maughan S. C., Cobbett C. S., Van Montagu M., Inzé D., May M. J., Sung Z. R.. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development.  Plant Cell. (2000);  12 97-109
  • 176 Vitousek P. M., Howarth R. W.. Nitrogen limitation on land and in the sea - how can it occur?.  Biogeochemistry. (1991);  13 87-115
  • 177 Watanabe T., Seo S., Sakai S.. Wound-induced expression of a gene for 1-aminocyclopropane-1-carboxylate synthase and ethylene production are regulated by both reactive oxygen species and jasmonic acid in Cucurbita maxima.  Plant Physiology and Biochemistry. (2001);  39 121-127
  • 178 Westerman S., De Kok L. J., Stuiver C. E. E., Stulen I.. Interaction between metabolism of atmospheric H2S in the shoot and sulphate uptake by the roots of curly kale (Brassica oleracea).  Physiologia Plantarum. (2000);  109 443-449
  • 179 Westerman S., Stulen I., Suter M., Brunold C., De Kok L. J.. Atmospheric H2S as sulfur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway.  Plant Physiology and Biochemistry. (2001);  39 425-432
  • 180 Wieser G., Tausz M., Wonisch A., Havranek W. M.. Free radical scavengers and photosynthetic pigments in Pinus cembra L. needles as affected by ozone exposure.  Biologia Plantarum. (2001);  44 225-232
  • 181 Wittstock U., Halkier B. A.. Glucosinolate research in the Arabidopsis era.  Trends in Plant Science. (2002);  7 263-270
  • 182 Xiang C., Werner B. L., Christensen E. M., Oliver D. J.. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels.  Plant Physiology. (2001);  126 564-574
  • 183 Yang S. F., Hoffman N. E.. Ethylene biosynthesis and its regulation in higher plants.  Annual Review of Plant Physiology and Plant Molecular Biology. (1984);  35 155-189
  • 184 Youssefian S., Nakamura M., Sano H.. Tobacco plants transformed with the O-acetylserine(thiol) lyase gene of wheat are resistant to toxic levels of hydrogen sulphide gas.  The Plant Journal. (1993);  4 759-769
  • 185 Youssefian S., Nakamura M., Orudgev E., Kondo N.. Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress.  Plant Physiology. (2001);  126 1001-1011
  • 186 Yu Y. B., Yang S. F.. Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion.  Plant Physiology. (1979);  64 1074-1077
  • 187 Yun S. C., Laurence J. A.. The response of clones of Populus tremuloides differing in sensitivity to ozone in the field.  New Phytologist. (1999 a);  141 411-421
  • 188 Yun S. C., Laurence J. A.. The response of sensitive and tolerant clones of Populus tremuloides to dynamic ozone exposure under controlled environmental conditions.  New Phytologist. (1999 b);  143 305-313
  • 189 Zhu Y. L., Pilon-Smits E. A. H., Jouanin L., Terry N.. Overexpression of glutathione synthetase in indian mustard enhanced cadmium accumulation and tolerance.  Plant Physiology. (1999 b);  119 73-79
  • 190 Zhu Y. L., Pilon-Smits E. A. H., Tarun A. S., Weber S. U., Jouanin L., Terry N.. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase.  Plant Physiology. (1999 a);  121 1169-1177
  • 191 Zimmermann P., Hennig L., Gruissem W.. Gene-expression analysis and network discovery using Genevestigator.  Trends in Plant Science. (2005);  10 407-409

1 Dedicated to Prof. Dr. L. Bergmann at the occasion of his 80th birthday.

H. Rennenberg

Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie
Universität Freiburg

Georges-Köhler-Allee 053/054

79110 Freiburg

Germany

Email: heinz.rennenberg@ctp.uni-freiburg.de

Guest Editor: T. Rausch

    >