Thorac Cardiovasc Surg 2007; 55: S147-S167
DOI: 10.1055/s-2007-965414
Position Paper

© Georg Thieme Verlag KG Stuttgart · New York

Alternatives to Heart Transplantation

Symposium of the “Treatment of End-Stage Heart and Lung Failure” Working Group on October 22, 2005 in MunichM. Strüber1 , R. Lange2 , J. F. Gummert3 , F. Beyersdorf4 , M. Jurmann5 , C. Schmid6 , A. El Banayosy7 , U. C. Hoppe8 , G. Steinbeck9 , H. Reichenspurner10 , A. Liebold11 , W.-M. Franz9 , A. Ruhparwar1 , M. Schmoeckel12
  • 1Herz-, Thorax-, Transplantantions- u. Gefäßchirurgie, Medizinische Hochschule Hannover
  • 2Klinik für Herz- und Gefäßchirurgie, Deutsches Herzzentrum München
  • 3Klinik für Herz- und Thoraxchirurgie, Friedrich-Schiller-Universität Jena
  • 4Abteilung für Herz- und Gefäßchirurgie, Universität Freiburg
  • 5Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum Berlin
  • 6Klinik und Poliklinik für Herz-, Thorax- und herznahe Gefäßchirurgie, Universitätsklinikum Regensburg
  • 7Klinik für Thorax- und Gefäßchirurgie, Herz und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen
  • 8Klinik III für Innere Medizin, Universität zu Köln
  • 9Medizinische Klinik und Poliklinik I Großhadern der Ludwig-Maximilians-Universität München
  • 10Klinik und Poliklinik für Herz- und Gefäßchirurgie des Universitären Herzzentrums Hamburg
  • 11Klinik und Poliklinik für Herzchirurgie der Universität Rostock
  • 12Herzchirurgische Klinik am Klinikum Großhadern, Ludwig-Maximilians-Universität München
Further Information

Publication History

Publication Date:
31 August 2007 (online)

Abstract

Heart transplantation is currently the treatment of first choice in patients with end-stage refractory heart failure. But already the demand for donor organs cannot be met, and patients face long waiting times for transplantation. In the future waiting times will become even longer as life expectancy increases and the number of heart-failure patients requiring transplantation grows. Consequently, in view of the poor prognosis of the disease in its advanced stages, alternatives to heart transplantation are increasingly gaining importance. In recent years new innovative treatment methods and techniques have been developed which have already proved clinically successful in patients with end-stage heart failure, especially as bridging measures. Some of these techniques appear suitable for long-term use and could therefore serve as an alternative to heart transplantation in some patients. Interesting new avenues of research may even lead to cardiac cell replacement therapies in the future. These approaches are currently undergoing initial clinical trials. This report presents surgical and cardiologic treatments for end-stage heart failure that have already been clinically investigated as well as techniques that are still in the preclinical stage and discusses their potential as alternatives to heart transplantation.

References

  • 1 Hoppe. et al . Guidelines for the treatment of chronic heart failure. Issued by the Executive Committee of the German Society of Cardiology - Heart and Circulation Research, compiled on behalf of the Clinical Cardiology Committee in cooperation with the Drug Committee of the German Physicians' Association.  Z Kardiol. 2001;  90 218-237
  • 2 Hunt S A. et al . ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure).  J Am Coll Cardiol. 2005;  46 e1-e82
  • 3 Haas F. et al . Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease.  J Am Coll Cardiol. 1997;  30 1693-1700
  • 4 Appoo J. et al . Long-term outcome of isolated coronary artery bypass surgery in patients with severe left ventricular dysfunction.  Circulation. 2004;  110 (Suppl 1) II13-II17
  • 5 Trachiotis G D. et al . Coronary artery bypass grafting in patients with advanced left ventricular dysfunction.  Ann Thorac Surg. 1998;  66 1632-1639
  • 6 Kleikamp G. et al . Determinants of mid- and long-term results in patients after surgical revascularization for ischemic cardiomyopathy.  Ann Thorac Surg. 2004;  78 1515-1516
  • 7 DeRose Jr J J. et al . Preoperative prediction of long-term survival after coronary artery bypass grafting in patients with low left ventricular ejection fraction.  J Thorac Cardiovasc Surg. 2005;  129 314-321
  • 8 Yau T M. et al . Predictors of operative risk for coronary bypass operations in patients with left ventricular dysfunction.  J Thorac Cardiovasc Surg. 1999;  118 1006-1013
  • 9 Bolling S F. Mitral reconstruction in cardiomyopathy.  J Heart Valve Dis. 2002;  11 (Suppl 1) S26-S31
  • 10 Seipelt R G. et al . Downsizing of the mitral valve and coronary revascularization in severe ischemic mitral regurgitation results in reverse left ventricular and left atrial remodeling.  Eur J Cardiothorac Surg. 2001;  20 270-275
  • 11 Geidel S. et al . Coronary artery bypass grafting in patients with advanced left ventricular dysfunction.  Eur J Cardiothorac Surg. 2005;  27 1011-1016
  • 12 Grossi E A. et al . Ischemic mitral valve reconstruction and replacement: comparison of long-term survival and complications.  J Thorac Cardiovasc Surg. 2001;  122 1107-1124
  • 13 Haan C K. et al . Selecting patients with mitral regurgitation and left ventricular dysfunction for isolated mitral valve surgery.  Ann Thorac Surg. 2004;  78 820-825
  • 14 Bishay E S. et al . Mitral valve surgery in patients with severe left ventricular dysfunction.  Eur J Cardiothorac Surg. 2000;  17 213-221
  • 15 Gummert J F. et al . Mitral valve repair in patients with end stage cardiomyopathy: who benefits?.  Eur J Cardiothorac Surg. 2003;  23 1017-1022
  • 16 Kass D A. et al . Reverse remodeling from cardiomyoplasty in human heart failure. External constraint versus active assist.  Circulation. 1995;  91 2314-2318
  • 17 Patel H J. et al . Stabilization of chronic remodeling by asynchronous cardiomyoplasty in dilated cardiomyopathy: effects of a conditioned muscle wrap.  Circulation. 1997;  96 3665-3671
  • 18 Power J M. et al . Passive ventricular constraint is a trigger for a significant degree of reverse remodeling in an experimental model of degenerative heart failure and dilated cardiomyopathy.  Circulation. 2000;  102 (Suppl) II501
  • 19 Sabah H N. et al . Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment.  Circ Res. 2003;  93 1095-1101
  • 20 Konertz W F. et al . Passive containment and reverse remodeling by a novel textile cardiac support device.  Circulation. 2001;  104 (12 Suppl 1) I270-I275
  • 21 Aranda J M. et al .Predictors of Hospital Length of Stay in a Surbical Approach to the Failing Heart: The ACORN Cardiac Support Device Randomized Trial Experience. 2004 HF Society of America poster presentation Sept 13, 2004. 
  • 22 White H D. et al . Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction.  Circulation. 1987;  76 44-51
  • 23 Yamaguchi A. et al . Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy.  Ann Thorac Surg. 1998;  65 434-438
  • 24 Gaudron P. et al . Time course of cardiac structural, functional and electrical changes in asymptomatic patients after myocardial infarction: their interrelation and prognostic impact.  J Am Coll Cardiol. 2001;  38 33-40
  • 25 Di Donato M. et al . Intermediate survival and predictors of death after surgical ventricular restoration. Semin Thorac Cardiovasc Surg 2001; 13: 468-475.  Erratum in: Semin Thorac Cardiovasc Surg. 2004;  16 113
  • 26 Athanasuleas C L. et al . Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation.  J Am Coll Cardiol. 2005;  46 1439-1445
  • 27 Yamaguchi A. et al . Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy.  Ann Thorac Surg. 2005;  79 456-461
  • 28 Rose E A. et al . Long-term mechanical left ventricular assistance for end-stage heart failure.  N Engl J Med. 2001;  345 1435-1443
  • 29 Stevenson L W. et al . Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure).  Circulation. 2004;  110 975-981
  • 30 Dembitsky W P. et al . Left ventricular assist device performance with long-term circulatory support: lessons from the REMATCH trial.  Ann Thorac Surg. 2004;  78 2123-2129
  • 31 Healy A H. et al .Improved Outcomes in Destination Therapy LvAD Patients: A Single Experience. 31st Abstract presented at the Annual Meeting of the Western Thoracic Surgical Association (WTSA), Victoria, British Columbia 2005. 
  • 32 Pae W E. et al . Initial European experience with the LionHeart(TM) LVAS (left ventricular assist system) for destination therapy. 23rd Annual Meeting and Scientific Sessions of the International Society for Heart and Lung Transplantation, Wien 2003.  J Heart Lung Transplant. 2003;  22 (1S) S83
  • 33 Jurmann M J. et al . Permanent mechanical circulatory support in patients of advanced age.  Eur J Cardiothorac Surg. 2004;  25 610-618
  • 34 El-Banayosy. et al . CardioWest total artificial heart: Bad Oeynhausen experience.  Ann Thorac Surg. 2005;  80 548-552
  • 35 Copeland J G. et al . Cardiac replacement with a total artificial heart as a bridge to transplantation.  N Engl J Med. 2004;  351 859-867
  • 36 Shamim W. et al . Incremental changes in QRS duration in serial ECGs over time riidentify high-risk elderly patients with heart failure.  Heart. 2002;  88 47-51
  • 37 Faber L. et al . Analysis of inter- and intraventricular asynchrony by tissue Doppler echocardiography.  Z Kardiol. 2003;  92 994-1002
  • 38 Anderson K P. et al . Electrocardiographic predictors in the ESVEM trial: unsustained ventricular tachycardia, heart period variability, and the signal-averaged electrocardiogram.  Prog Cardiovasc Dis. 1996;  38 463-488
  • 39 Silverman M E. et al . Prognostic value of the signal-averaged electrocardiogram and a prolonged QRS in ischemic and nonischemic cardiomyopathy.  Am J Cardiol. 1995;  75 460-464
  • 40 Schoeller R. et al . First- or second-degree atrioventricular block as a risk factor in idiopathic dilated cardiomyopathy.  Int J Cardiol. 1993;  71 720-726
  • 41 Gottipaty V K. The resting electrocardiogram provides a sensitive and inexpensive marker of prognosis in patients with chronic heart failure. (Abstract 847-4).  J Am Coll Cardiol. 1999;  33 145A
  • 42 Auricchio A. et al . The pacing therapies for congestive heart failure (PATH‐CHF) study: rationale, design, and endpoints of a prospecitve randomized multicenter study.  Am J Cardiol. 1999;  83 130D-135D
  • 43 Abraham W T. et al . For the MIRACLE study group. Cardiac resynchronization in chronic heart failure.  N Engl J Med. 2002;  346 1845-1853
  • 44 Gras D. et al . Multisite pacing as a supplemental treatment of congestive heart failure: preliminary results of the Medtronic Inc. InSync Study.  Pacing Clin Electrophysiol. 1998;  21 2249-2255
  • 45 Leclerq C. et al . Comparative effects of permanent biventricular and right-univentricular pacing in heart failure patients with chronic atrial fibrillation.  Eur Heart J. 2002;  23 1780-1787
  • 46 Cleland J G. et al . The effect of cardiac resynchronization on morbidity and mortality in heart failure.  N Engl J Med. 2005;  352 1539-1549
  • 47 Cleland J G, Daubert J C, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L. Longer-term effects of cardiac resynchronization therapy on mortality in heart failure (the CArdiac REsynchronization - Heart Failure [CARE‐HF] trial extension phase).  Eur Heart J. 2006;  27 1928-1932
  • 48 Bristow M R. et al . Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure.  N Engl J Med. 2004;  350 2140-2150
  • 49 Moss A J, Zareba W, Hall W J. et al . Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction.  N Engl J Med. 2002;  346 877-883
  • 50 Bardy G H. et al . Amiodarone or an implantable cardiodeverter-defibrillator for congestive heart failure.  N Engl J Med. 2005;  352 225-237
  • 51 Nieminen M S. et al . Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology.  Eur Heart J. 2005;  26 384-416
  • 52 Follath F. et al . Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial.  Lancet. 2002;  360 196-202
  • 53 Cleland J GF. et al . Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS‐US, RIO-Lipids and cardiac resynchronisation therapy in heart failure.  Eur J Heart Fail. 2004;  6 501-508
  • 54 Packer M. REVIVE II: Multicenter placebo-controlled trial of levosimendan on clinical statuts in acutely decompensated heart failure. Dallas, TX: American Heart Association Scientific Sessions, November 13 - 16, 2005. 
  • 55 Mebazaa A. he SURVIVE trial: comparison of dobutamine and levosimendan on survival in acute decompensated heart failure. Dallas, TX: American Heart Association Scientific Sessions, November 13 - 16, 2005. 
  • 56 Colucci W S. et al . Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group.  N Engl J Med. 2000;  343 246-253
  • 57 Publication Committee for the VMAC Investigators (Vasodilatation in the Management of Acute CHF) . Intravenous nesiritide vs. nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial.  JAMA. 2002;  287 1531-1540
  • 58 Sackner-Bernstein J D. et al . Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials.  JAMA. 2005;  293 1900-1905
  • 59 Pouzet B. et al . Is skeletal myoblast transplantation clinically relevant in the era of angiotensin-converting enzyme inhibitors?.  Circulation. 2001;  104 223-228
  • 60 Jain M. et al . Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction.  Circulation. 2001;  104 1920-1927
  • 61 Ghostine S. et al . Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction.  Circulation. 2002;  106 131-136
  • 62 Menasche P. et al . Myoblast transplantation for heart failure.  Lancet. 2001;  357 279-280
  • 63 Menasche P. et al . Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction.  J Am Coll Cardiol. 2004;  41 1078-1083
  • 64 Hagege A A. et al . Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy.  Lancet. 2004;  361 491-492
  • 65 Orlic D. et al . Bone marrow cells regenerate infarcted myocardium.  Nature. 2001;  410 701-705
  • 66 Murry C E. et al . Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts.  Nature. 2004;  428 664-668
  • 67 Kajstura. et al . Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion.  Circ Res. 2005;  96 127-137
  • 68 Tomita S. et al . Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation.  J Thorac Cardiovasc Surg. 2002;  123 1132-1140
  • 69 Ma N. et al . Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice.  Cardiovasc Res. 2005;  66 45-54
  • 70 Hagege A A. et al . Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy.  Lancet. 2004;  361 491-492
  • 71 Beltrami A P. et al . Adult cardiac stem cells are multipotent and support myocardial regeneration.  Cell. 2003;  114 763-766
  • 72 Urbanek K. et al . Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy.  Proc Natl Acad Sci USA. 2003;  100 10440-10450
  • 73 Stamm C. et al . Autologous bone-marrow stem-cell transplantation for myocardial regeneration.  Lancet. 2003;  361 45-46
  • 74 Stamm C. et al . CABG and bone marrow stem cell transplantation after myocardial infarction.  Thorac Cardiovasc Surg. 2004;  52 152-158
  • 75 Wollert K C, Meyer G P, Lotz J. et al . Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.  Lancet. 2004;  364 141-148
  • 76 Strauer B E, Brehm M, Zeus T. et al . Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.  Circulation. 2002;  106 1913-1918
  • 77 Schachinger V, Assmus B, Britten M B. et al . Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE‐AMI Trial.  J Am Coll Cardiol. 2004;  44 1690-1699
  • 78 Meyer G P, Wollert K C, Lotz J. et al . Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.  Circulation. 2006;  113 1287-1294
  • 79 Schachinger V, Erbs S, Elsasser A. et al . Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.  N Engl J Med. 2006;  355 1210-1221
  • 80 Assmus B, Honold J, Schachinger V. et al . Transcoronary transplantation of progenitor cells after myocardial infarction.  N Engl J Med. 2006;  355 1222-1232
  • 81 Assmus B, Schachinger V, Teupe C. et al . Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE‐AMI).  Circulation. 2002;  106 3009-3017
  • 82 Hofmann M, Wollert K C, Meyer G P. et al . Monitoring of bone marrow cell homing into the infarcted human myocardium.  Circulation. 2005;  111 2198-2202
  • 83 Janssens S, Dubois C, Bogaert J. et al . Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.  Lancet. 2006;  367 113-121
  • 84 Lunde K, Solheim S, Aakhus S. et al . Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.  N Engl J Med. 2006;  355 1199-1209
  • 85 Penn M S. Stem-cell therapy after acute myocardial infarction: the focus should be on those at risk.  Lancet. 2006;  367 87-88
  • 86 Rosenzweig A. Cardiac cell therapy-mixed results from mixed cells.  N Engl J Med. 2006;  355 1274-1277
  • 87 Orlic D, Kajstura J, Chimenti S. et al . Mobilized bone marrow cells repair the infarcted heart, improving function and survival.  Proc Natl Acad Sci USA. 2001;  98 10344-10349
  • 88 Ohtsuka M, Takano H, Zou Y. et al . Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization.  FASEB J. 2004;  18 851-853
  • 89 Minatoguchi S, Takemura G, Chen X H. et al . Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment.  Circulation. 2004;  109 2572-2580
  • 90 Harada M, Qin Y, Takano H. et al . G‐CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes.  Nat Med. 2005;  11 305-311
  • 91 Deindl E, Zaruba M M, Brunner S. et al . G‐CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis.  FASEB J. 2006;  20 956-958
  • 92 Kocher A A, Schuster M D, Szabolcs M J. et al . Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.  Nat Med. 2001;  7 430-436
  • 93 Kuhlmann M T, Kirchhof P, Klocke R. et al . G‐CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis.  J Exp Med. 2006;  203 87-97
  • 94 Valgimigli M, Rigolin G M, Cittanti C. et al . Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile.  Eur Heart J. 2005;  26 1838-1845
  • 95 Ince H, Petzsch M, Kleine H D. et al . Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE‐AMI).  Circulation. 2005;  112 3097-3106
  • 96 Engelmann M G, Theiss H D, Hennig-Theiss C. et al . Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G‐CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial.  J Am Coll Cardiol. 2006;  48 1712-1721
  • 97 Ripa R S, Jorgensen E, Wang Y. et al . Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial.  Circulation. 2006;  113 1983-1992
  • 98 Zohlnhofer D, Ott I, Mehilli J. et al . Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial.  JAMA. 2006;  295 1003-1010
  • 99 Nir S G, David R, Zaruba M. et al . Human embryonic stem cells for cardiovascular repair.  Cardiovasc Res. 2003;  58 313-323
  • 100 Kehat I, Kenyagin-Karsenti D, Snir M. et al . Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes.  J Clin Invest. 2001;  108 407-414
  • 101 Maitra A, Arking D E, Shivapurkar N. et al . Genomic alterations in cultured human embryonic stem cells.  Nat Genet. 2005;  37 1099-1103
  • 102 Xiao Y F, Min J Y, Morgan J P. Immunosuppression and xenotransplantation of cells for cardiac repair.  Ann Thorac Surg. 2004;  77 737-744
  • 103 Zhang Y M, Hartzell C, Narlow M. et al . Stem cell-derived cardiomyocytes demonstrate arrhythmic potential.  Circulation. 2002;  106 1294-1299
  • 104 David R, Groebner M, Franz W M. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.  Stem Cells. 2005;  23 477-482
  • 105 Muller M, Fleischmann B K, Selbert S. et al . Selection of ventricular-like cardiomyocytes from ES cells in vitro.  FASEB J. 2000;  14 2540-2548
  • 106 Kofidis T. et al . In vitro engineering of heart muscle: artificial myocardial tissue.  J Thorac Cardiovasc Surg. 2002;  124 63-69
  • 107 Ley R. et al . A xenogeneic acellularized matrix for heart valve tissue engineering: in vivo study in a sheep model.  Z Kardiol. 2003;  92 938-946
  • 108 EBailey L L. et al . Baboon-to-human cardiac xenotransplantation in a neonate.  JAMA. 1985;  254 3321-3329
  • 109 Schmoeckel M. et al . Transplanting organs from pigs transgenic for a single human complement regulatory protein.  Graft. 2001;  4 66-67
  • 110 Brandl U. et al . Administration of GAS914 in an orthotopic pig-to-baboon heart transplantation model.  Xenotransplantation. 2005;  12 134-141
  • 111 Kuwaki K. et al . Heart transplantation in baboons using alpha 1, 3-galactosyltransferase gene-knockout pigs as donors: initial experience.  Nat Med. 2005;  11 29-31
  • 112 McGregor C G. et al . Cardiac xenotransplantation: recent preclinical progress with 3-month median survival.  J Thorac Cardiovasc Surg. 2005;  130 844-851
  • 113 Fishman J A. et al . Xenotransplantation: infectious risk revisited.  Am J Transplant. 2004;  4 1383-1390

PD Dr. M. Strüber

Herz-, Thorax-, Transplantations- und Gefäßchirurgie
Medizinische Hochschule Hannover

Carl-Neuberg-Straße 1

30625 Hannover

Germany

Email: strueber.martin@mh-hannover.de

    >