References and Notes
<A NAME="RW14706ST-1A">1a</A>
Ho T.-L.
Tandem Organic Reactions
New York;
Wiley:
1992.
<A NAME="RW14706ST-1B">1b</A>
Tietze LF.
Chem. Rev.
1996,
96:
115
<A NAME="RW14706ST-1C">1c</A>
Nicolaou KC.
Montagnon T.
Snyder SA.
Chem. Commun.
2003,
551
<A NAME="RW14706ST-2">2</A>
Guo H.-C.
Ma J.-A.
Angew. Chem. Int. Ed.
2005,
44:
2
<A NAME="RW14706ST-3A">3a</A>
Feringa BL.
Acc. Chem. Res.
2000,
33:
346
<A NAME="RW14706ST-3B">3b</A>
Krause N.
Hoffmann-Röder A.
Synthesis
2001,
171
<A NAME="RW14706ST-3C">3c</A>
Alexakis A.
Benhaim C.
Eur. J. Org. Chem.
2002,
3221
<A NAME="RW14706ST-4A">4a</A>
Alexakis A. In Transition Metal Catalysed Reactions
Murahashi S.-I.
Davies SG.
IUPAC Blackwell Science;
Oxford:
1999.
p.303
<A NAME="RW14706ST-4B">4b</A>
Ibuka T.
Organocopper Reagents in Organic Synthesis
Rose Press;
Osaka:
2000.
<A NAME="RW14706ST-4C">4c</A>
Krause N.
Modern Organocopper Chemistry
Wiley-VCH;
Weinheim:
2002.
<A NAME="RW14706ST-4D">4d</A>
Rathgeb X.
March S.
Alexakis A.
J. Org. Chem.
2006,
71:
5737
<A NAME="RW14706ST-4E">4e</A>
Li K.
Alexakis A.
Tetrahedron Lett.
2005,
46:
8019
<A NAME="RW14706ST-4F">4f</A>
Li K.
Alexakis A.
Tetrahedron Lett.
2005,
46:
5823
For Co-catalyzed 1,4-addition/aldol and Michael cyclization, see:
<A NAME="RW14706ST-5A">5a</A>
Baik T.-G.
Luiz A.-L.
Wang L.-C.
Krische MJ.
J. Am. Chem. Soc.
2001,
123:
5112
<A NAME="RW14706ST-5B">5b</A>
Wang L.-C.
Jang H.-Y.
Roh Y.
Schultz AJ.
Wang X.
Lynch V.
Krische MJ.
J. Am. Chem. Soc.
2002,
124:
9448
For Rh-catalyzed 1,4-addition/aldol cyclization, see:
<A NAME="RW14706ST-6A">6a</A>
Jang H.-Y.
Huddleston RR.
Krische MJ.
J. Am. Chem. Soc.
2002,
124:
15156
<A NAME="RW14706ST-6B">6b</A>
Huddleston RR.
Krische MJ.
Org. Lett.
2003,
5:
1143
For PR3-catalyzed 1,4-addition/Michael cyclization, see:
<A NAME="RW14706ST-7A">7a</A>
Wang LC.
Luiz A.-L.
Agapiou K.
Jang H.-Y.
Krische MJ.
J. Am. Chem. Soc.
2002,
124:
2402
<A NAME="RW14706ST-7B">7b</A>
Agapiou K.
Krische MJ.
Org. Lett.
2003,
5:
1737
<A NAME="RW14706ST-8">8</A> For catalytic 1,4-addition/cycloallylation, see:
Jellerichs BG.
Kong J.-R.
Krische MJ.
J. Am. Chem. Soc.
2003,
125:
7758
<A NAME="RW14706ST-9">9</A> For Rh-catalyzed 1,4-addition/aldol cyclization, see:
Cauble DF.
Gipson JG.
Krische MJ.
J. Am. Chem. Soc.
2003,
125:
1110
<A NAME="RW14706ST-10A">10a</A>
Feringa BL.
Pineschi M.
Arnold L.
Imbos AR.
de Vries AHM.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2620 ; Angew. Chem. 1997, 109, 2773
<A NAME="RW14706ST-10B">10b</A>
Keller E.
Maurer J.
Naasz R.
Schrader T.
Meetsma A.
Feringa BL.
Tetrahedron: Asymmetry
1998,
9:
2409
<A NAME="RW14706ST-10C">10c</A>
Arnold LA.
Naasz R.
Minnaard AJ.
Feringa BL.
J. Am. Chem. Soc.
2001,
123:
5841
<A NAME="RW14706ST-10D">10d</A>
Mandoli A.
Arnold LA.
Salvadori P.
Feringa BL.
Tetrahedron: Asymmetry
2001,
12:
1929
<A NAME="RW14706ST-10E">10e</A>
Arnold LA.
Naasz RA.
Minnaard J.
Feringa BL.
J. Org. Chem.
2002,
67:
7244
<A NAME="RW14706ST-11A">11a</A>
Naasz R.
Arnold LA.
Pineschi M.
Keller E.
Feringa BL.
J. Am. Chem. Soc.
1999,
121:
1104
<A NAME="RW14706ST-11B">11b</A>
Pineschi M.
Moro FD.
Gini F.
Minnaard AJ.
Feringa BL.
Chem. Commun.
2004,
1244
<A NAME="RW14706ST-12">12</A>
Dijk EW.
Panella L.
Pinho P.
Naasz R.
Meetsma A.
Minnaard AJ.
Feringa BL.
Tetrahedron
2004,
60:
9687
<A NAME="RW14706ST-13A">13a</A>
Alexakis A.
Trevitt GP.
Bernardinelli G.
J. Am. Chem. Soc.
2001,
123:
4358
<A NAME="RW14706ST-13B">13b</A>
Knopff O.
Alexakis A.
Org. Lett.
2002,
4:
3835
<A NAME="RW14706ST-13C">13c</A>
Alexakis A.
March S.
J. Org. Chem.
2002,
67:
8753
<A NAME="RW14706ST-14A">14a</A>
Degrado SJ.
Mizutani H.
Hoveyda AH.
J. Am. Chem. Soc.
2001,
123:
755
<A NAME="RW14706ST-14B">14b</A>
Mizutani H.
Degrado SJ.
Hoveyda AH.
J. Am. Chem. Soc.
2002,
124:
779
<A NAME="RW14706ST-15">15</A>
Agapiou K.
Cauble DF.
Krische MJ.
J. Am. Chem. Soc.
2004,
126:
4528
For the enantioselective nitroso aldol reaction and related papers, see:
<A NAME="RW14706ST-16A">16a</A>
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2003,
125:
6038
<A NAME="RW14706ST-16B">16b</A>
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
6498
<A NAME="RW14706ST-16C">16c</A>
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
5360
<A NAME="RW14706ST-16D">16d</A>
Momiyama N.
Torii H.
Saito S.
Yamamoto H.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5374
<A NAME="RW14706ST-16E">16e</A>
Yamamoto Y.
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
5962
<A NAME="RW14706ST-16F">16f</A>
Mathew SP.
Iwamura HD.
Blackmond G.
Angew. Chem. Int. Ed.
2004,
43:
3317
<A NAME="RW14706ST-16G">16g</A>
Córdova A.
Sundén H.
Bøgevig A.
Johansson M.
Himo F.
Chem. Eur. J.
2004,
10:
3673
<A NAME="RW14706ST-16H">16h</A>
Hayashi Y.
Yamaguchi J.
Sumiya T.
Hibino K.
Shoji M.
J. Org. Chem.
2004,
69:
5966
<A NAME="RW14706ST-16I">16i</A>
Hayashi Y.
Yamaguchi J.
Hibino K.
Sumiya T.
Urushima T.
Shoji M.
Hashizumi D.
Koshino H.
Adv. Synth. Catal.
2004,
346:
1435
<A NAME="RW14706ST-16J">16j</A>
Wang W.
Wang J.
Li H.
Liao L.
Tetrahedron Lett.
2004,
45:
7235
<A NAME="RW14706ST-16K">16k</A>
Iwamura H.
Wells DH.
Mathew SP.
Klussmann M.
Armstrong A.
Blackmond DG.
J. Am. Chem. Soc.
2004,
126:
16312
<A NAME="RW14706ST-17">17</A>
Yamamoto Y.
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
5962
<A NAME="RW14706ST-18">18</A>
Bamberger E.
Ber. Dtsch. Chem. Ges.
1894,
27:
1548
<A NAME="RW14706ST-19">19</A>
Copper-Catalyzed Enantioselective Tandem Conjugate Addition/
N
-Nitroso-Aldol Reaction: Typical Procedure: Under an Ar atmosphere, a solution of Cu(OTf)2 (3.6 mg, 0.010 mmol) and the monodentate phosphoramidite (0.020 mmol) in toluene
(1 mL) was stirred at r.t. for 1 h. The colorless solution was cooled (-20 °C) and
the ketone (0.50 mmol) and the diethylzinc solution (1.2 equiv) in hexane (1.0 M,
0.6 mL, 0.6 mmol) were added. After 3 h at -20 °C, PhNO (80.2 mg, 0.75 mmol, 1.5 equiv)
in anhyd toluene (1.5 mL) was added. After stirring the mixture for 18 h, sat. aq
NH4Cl (10 mL) was added to the reaction mixture, and then the reaction mixture was extracted
with EtOAc (3 × 10 mL). The combined organic phases were washed with brine and dried
over Na2SO4. The solvent was then removed under vacuum. After purification by flash chromatography
on silica gel (PE-EtOAc, 200:1), the addition product 2a was obtained in 86.4% yield as a 2:1 diastereomeric mixture. IR (KBr): 3413, 2956,
2825, 2871, 1677, 1637, 1594, 1489, 1452, 1377, 1362, 1257, 1222 cm-1. MS: m/z = 345 [M+], 240 (47), 226 (80), 104 (53), 91 (44), 77 (100). 2a
¹
(minor isomer); yellow solid; mp 117.9-119.6 °C. 1H NMR (300 MHz, CDCl3): δ = 0.78 (t, J = 7.3 Hz, 3 H), 1.82 (m, J = 7.3 Hz, 1 H), 2.43 (m, J = 7.3 Hz, 1 H), 3.50 (m, J = 10.3 Hz, 1 H), 5.27 (d, J = 10.3 Hz, 1 H), 6.79 (t, J = 7.1 Hz, 1 H), 6.97-7.34 (m, 15 H). 13C NMR (75 MHz, CDCl3): δ = 11.7, 22.7, 48.2, 70.9, 114.9, 121.4, 126.9, 127.9, 128.1, 128.3, 128.4, 128.9,
129.1, 133.0, 137.2, 139.6, 151.3, 205.8. 2a
²
(major isomer): yellow oil. 1H NMR (300 MHz, CDCl3): δ = 0.72 (t, J = 7.2 Hz, 3 H), 1.62 (m, J = 7.2 Hz, 2 H), 3.61 (m, 1 H), 5.4 (d, J = 9.7 Hz, 1 H), 6.79 (t, J = 7.1 Hz, 1 H), 6.97-7.34 (m, 15 H). 13C NMR (75 MHz, CDCl3): δ = 12.3, 26.2, 47.4, 71.5, 115.5, 121.5, 126.7, 128.3, 128.4, 128.5, 128.6, 128.8,
133.8, 137.8, 141.5, 151.2, 203.7.
The enantiomeric excess of 2a was determined according to the following procedure: EtOH (20 mL) and HCl (2 M, 20
mL) were added to 2a at r.t. and the mixture was stirred for 2 d. The solvent was evaporated under vacuum
and to the residue was added H2O (10 mL) and the resulting mixture was extracted with EtOAc (3 × 10 mL). The combined
organic phase was washed with brine and dried over Na2SO4. The solvent was then removed under vacuum. Purification by flash chromatography
on silica gel afforded 3a (PE-EtOAc, 200:1). IR (KBr): 3514, 3419, 2957, 2926, 2871, 1677, 1595, 1488, 1452,
1446, 1258, 1223, 1211, 750, 768, 696, 685 cm-1. MS: m/z = 363 [M+], 258 (100), 244 (39), 105 (23), 91 (30), 77 (40). 3a
¹
: yellow solid; mp 99.1-102.5 °C. 1H NMR (300 MHz, CDCl3): δ = 0.67 (t, J = 7.3 Hz, 3 H), 1.75 (m, 2 H), 2.99 (q, J = 4.8 Hz, 1 H), 4.75 (d, J = 9.2 Hz, 1 H), 5.03 (q, J = 4.6 Hz, 1 H), 6.36 (q, J = 6.7 Hz, 2 H), 6.98 (q, J = 6.7 Hz, 2 H), 7.20-7.26 (m, 5 H), 7.43-7.48 (m, 2 H), 7.54-7.57 (m, 1 H), 7.85-7.88
(q, J = 10.0 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 12.1, 22.5, 50.9, 64.5, 115.4, 122.9, 127.1, 128.4, 128.7, 128.9, 129.1, 133.6,
135.8, 146.6, 200.6.
3a
²
: yellow oil. 1H NMR (300 MHz, CDCl3): δ = 0.84 (t, J = 7.3 Hz, 3 H), 1.90 (m, 2 H), 3.09 (m, 1 H), 4.31 (d, J = 9.2 Hz, 1 H), 5.16 (q, J = 4.4 Hz, 1 H), 6.57 (q, J = 6.8 Hz, 2 H), 6.98 (m, 2 H), 7.04 (q, J = 6.8 Hz, 2 H), 7.22-7.26 (m, 3 H), 7.48-7.62 (m, 3 H), 7.92-7.95 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 12.5, 25.4, 50.8, 62.9, 115.4, 122.9, 127.2, 128.4, 128.4, 128.7, 129.0, 129.1,
133.6, 136.0, 138.8, 146.4, 199.9. Enantiomeric excess: 87%, 87%, determined by chiral
HPLC analysis [Daicel Chiralcel AS; hexane-i-PrOH = 99:1, flow = 1.0 mL/min, t
R
(3a
¹
) = 12.49 min, 18.19 min; t
R
(3a
²
) = 13.95 min, 22.65 min].
<A NAME="RW14706ST-20">20</A>
Crystal data of 3c: C23H21ClFNO, MW = 381.86, orthorhombic, space group P2(1)2(1)2(1), a = 9.682(2), b = 19.389(3), c = 21.673(4) Å, α = 90°, β = 90°, γ = 90°, V = 4068.5(13) Å3, T = 296(2) K, Z = 8, D
c = 1.247 mg/m3, µ = 0.208 mm-1, λ = 0.71073 Å, F(000) = 464, crystal size: 0.60 × 0.50 × 0.36 mm3, 9078 reflections collected, 7582 independent reflections [R(int) = 0.0203]; refinement
method: full-matrix least-squares on F2; goodness-of-fit on F
²
= 0.804, final R indices [I > 2σ(I)] R1 = 0.0419, wR2 = 0.0853 (CCDC no. 618359).