References and Notes
<A NAME="RD34406ST-1A">1a</A>
Caffyn AJ.
Nicholas KM.
Comprehensive Organometallic Chemistry II
Vol. 12:
Abel EW.
Stone FG.
Wilkinson G.
Hegedus LS.
Pergamon;
Oxford:
1995.
Chap. 7.1.
<A NAME="RD34406ST-1B">1b</A>
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
<A NAME="RD34406ST-1C">1c</A>
Green JR.
Curr. Org. Chem.
2001,
5:
809
<A NAME="RD34406ST-1D">1d</A>
Teobald BJ.
Tetrahedron
2002,
58:
4133
<A NAME="RD34406ST-2A">2a</A>
Salazar KL.
Nicholas KM.
Tetrahedron
2000,
56:
2211
<A NAME="RD34406ST-2B">2b</A>
Salazar KL.
Masood AK.
Nicholas KM.
J. Am. Chem. Soc.
1997,
119:
9053
<A NAME="RD34406ST-2C">2c</A>
Lake K.
Dorrell M.
Blackman N.
Khan MA.
Nicholas KM.
Organometallics
2003,
22:
4260
<A NAME="RD34406ST-2D">2d</A>
Melykian GG.
Combs RC.
Lamirand J.
Khan M.
Nicholas KM.
Tetrahedron Lett.
1994,
35:
363
<A NAME="RD34406ST-3A">3a</A>
Melikyan GG.
Villena F.
Sepanian S.
Pulido M.
Sarkissian H.
Florut A.
Org. Lett.
2003,
5:
3395
<A NAME="RD34406ST-3B">3b</A>
Melikyan GG.
Deravakian A.
Myer S.
Yadegar S.
Hardcastle KI.
Ciurash J.
Toure P.
J. Organomet. Chem.
1999,
578:
68
<A NAME="RD34406ST-3C">3c</A>
Melikyan GG.
Sepanian S.
Riahi B.
Villena F.
Jerome J.
Ahrens B.
McClain R.
Matchett J.
Scanlon S.
Abrenica E.
Pausen K.
Hardcastle KI.
J. Organomet. Chem.
2003,
683:
324
<A NAME="RD34406ST-3D">3d</A>
Melikyan GG.
Vostrowsky O.
Bauer W.
Bestmann HJ.
Khan M.
Nicholas KM.
J. Org. Chem.
1994,
59:
222
For the synthesis of fused ring systems, see:
<A NAME="RD34406ST-4A">4a</A>
Tyrrell E.
Claridge S.
Davis R.
Lebel J.
Berge J.
Synlett
1995,
714
<A NAME="RD34406ST-4B">4b</A>
Berge J.
Claridge S.
Mann A.
Muller C.
Tyrrell E.
Tetrahedron Lett.
1997,
38:
685
<A NAME="RD34406ST-4C">4c</A>
Tyrrell E.
Tillett C.
Tetrahedron Lett.
1998,
39:
9535
<A NAME="RD34406ST-4D">4d</A>
Tyrrell E.
Skinner GA.
Bashir T.
Synlett
2001,
1929
<A NAME="RD34406ST-5">5</A>
Krafft ME.
Cheung YY.
Wright C.
Cali R.
J. Org. Chem.
1996,
61:
3912
<A NAME="RD34406ST-6">6</A>
Nakamura T.
Matsui T.
Tanino K.
Kuwajima I.
J. Org. Chem.
1997,
62:
3032
For intramolecular trapping with allylsilanes, see:
<A NAME="RD34406ST-7A">7a</A>
Lu Y.
Green JR.
Synlett
2001,
243
<A NAME="RD34406ST-7B">7b</A>
Patel MM.
Green JR.
Chem. Commun.
1999,
509
<A NAME="RD34406ST-8">8</A>
The axial protons in the α-position relative to either the complexed triple bond or
the halide are characterized by triplet of triplet patterns (J = 11.6-12.1 and 3.0-3.6 Hz; dtt were observed for protons α to fluorine).
<A NAME="RD34406ST-9">9</A>
Top S.
Jaouen G.
J. Org. Chem.
1981,
46:
78
<A NAME="RD34406ST-10">10</A>
Typical Experimental Procedure for the Preparation of Cyclic Halides
In a typical experiment dicobalt hexacarbonyl complex 1c (0.41 mmol, 200 mg, 1.0 equiv) was dissolved in CH2Cl2 (3.5 mL, i.e., 8 mL/1 mmol) and 2.0 equiv of HBF4 (112 µL, 0.82 mmol) was added under nitrogen. After stirring for 10 min at r.t.,
the reaction mixture was concentrated under reduced pressure. The crude product was
purified by liquid chromatography on silica gel eluting with pentane to afford 4c (133 mg, 0.27 mmol, 67%) as a mixture of two diastereomers in a 66:34 ratio.
Hexacarbonyl[-η
4
-{[(3-fluorocyclohexyl)ethynyl]benz-ene}]dicobalt (
4c)
Compound cis-4c: 1H NMR (300 MHz, CDCl3): δ = 1.23-1.39 (m, 2 H), 1.58-1.58 (m, 3 H), 1.98-2.24 (m, 2 H), 2.53 (br s, 1 H),
3.04 (br t, 1 H, J = 11.9 Hz), 4.68 (dtt, 1 H,
²
J
HF
= 48.3 Hz, J = 10.2, 5.1 Hz), 7.28-7.40 (m, 3 H), 7.49-7.52 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 23.5 (d,
³
J
CF
= 12.0 Hz, CH2), 32.8 (d,
²
J
CF
= 18.0 Hz, CH2), 34.5 (CH2), 40.3 (d,
³
J
CF
= 12.0 Hz, CH), 41.6 (d,
²
J
CF
= 18.0 Hz, CH2), 91.7 (d,
¹
J
CF
= 174.0 Hz, CH), 97.0 (C), 104.0 (C), 128.1 (CH), 129.3 (CH), 129.5 (CH), 138.5 (C),
200.1 (CO). 19F NMR (286 MHz, CDCl3): δ = -168.5.
Compound trans-4c: 1H NMR (300 MHz, CDCl3): δ = 1.32-1.62 (m, 3 H), 1.74 (m, 1 H), 1.90 (qt, 1 H, J = 13.6, 3.6 Hz), 2.07-2.17 (m, 2 H), 2.43 (m, 1 H), 3.42 (tt, 1 H, J = 12.1, 3.2 Hz), 5.04 (br d, 1 H,
²
J
HF
= 47.6 Hz), 7.28-7.50 (m, 3 H), 7.52-7.54 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 20.7 (CH2), 30.5 (d,
²
J
CF
= 21.0 Hz, CH2), 34.9 (CH2), 36.3 (CH), 39.7 (d,
²
J
CF
= 21.0 Hz, CH2), 89.5 (d,
¹
J
CF
= 168.0 Hz, CH), 91.8 (C), 105.4 (C), 128.1 (CH), 129.3 (CH), 129.6 (CH), 138.6 (C),
200.1 (CO). 19F NMR (286 MHz, CDCl3): δ = -183.3.
Anal. Calcd for C19H15Co2FO5: C, 49.59; H, 3.29. Found: C, 49.96; H, 3.30.
[13]
Typical Experimental Procedure for the Preparation of Cyclic Amides
In a typical experiment, dicobalt hexacarbonyl complex 1c (200 mg, 0.41 mmol, 1.0 equiv) was dissolved in MeCN (4 mL, 9 mL/1 mmol) and 1.1
equiv of TfOH (40 µL, 0.45 mmol) was added under nitrogen. After stirring for 10 min
at r.t., the reaction mixture was quenched with H2O and extracted with CH2Cl2 (2×). The combined organic layers were washed with brine, dried over MgSO4 and concentrated under reduced pressure. The residue was purified by chromatography
on silica gel eluting with 50:50 pentane-EtOAc to afford 5c (198 mg, 0.38 mmol, 92%) as a single cis-isomer.
cis
-Hexacarbonyl[µ-η
4
-{
N
-[(3-phenylethynyl)cyclo-hexyl]acetamide}]dicobalt (
5c)
1H NMR (300 MHz, CDCl3): δ = 1.11-1.32 (m, 4 H), 1.63 (qt, 1 H, J = 13.2, 3.0 Hz), 1.98 (s, 3 H), 2.06-2.13 (m, 2 H), 2.30-2.38 (m, 1 H), 3.11 (tt,
1 H, J = 11.5, 3.4 Hz), 4.04 (tdt, 1 H, J = 11.9, 8.3, 3.6 Hz), 5.44 (br d, 1 H, J = 8.3 Hz, NH), 7.29-7.45 (m, 3 H), 7.48-7.52 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 22.5 (CH3), 23.7 (CH2), 32.0 (CH2), 33.6 (CH2), 39.7 (CH), 40.4 (CH2), 47.0 (CH), 90.4 (C), 103.1 (C), 127.6 (CH), 127.9 (CH), 128.1 (CH), 137.1 (C),
168.1 (CO), 198.6 (CO).
HRMS (TOF MS ES+): m/z calcd [M + 1] for C22H19NO7Co2 [MH+]: 527.9898; found: 527.9898.
<A NAME="RD34406ST-11A">11a</A>
Schreiber SL.
Sammakia T.
Crowe WE.
J. Am. Chem. Soc.
1986,
108:
3128
<A NAME="RD34406ST-11B">11b</A>
Green JR.
Chem. Commun.
1998,
1751
<A NAME="RD34406ST-11C">11c</A>
Guo R.
Green JR.
Synlett
2000,
746
<A NAME="RD34406ST-11D">11d</A>
DiMartino J.
Green JR.
Tetrahedron
2006,
62:
1402
<A NAME="RD34406ST-11E">11e</A>
Konno T.
Nagaï G.
Ishihara T.
J. Fluorine Chem.
2006,
127:
510
<A NAME="RD34406ST-11F">11f</A>
Takano S.
Sugihara T.
Ogasawara K.
Synlett
1991,
70
<A NAME="RD34406ST-11G">11g</A>
Shibuya S.
Isobe M.
Synlett
1998,
373
<A NAME="RD34406ST-11H">11h</A>
Shibuya S.
Isobe M.
Tetrahedron
1998,
54:
6677
For a nucleophilicity scale of carbon-centered nucleophiles in intermolecular reactions,
see:
<A NAME="RD34406ST-12A">12a</A>
Mayr H.
Kempf B.
Ofial AR.
Acc. Chem. Res.
2003,
36:
66
<A NAME="RD34406ST-12B">12b</A>
Mayr H.
Kuhn O.
Schlierf C.
Ofial AR.
Tetrahedron
2000,
56:
4219
<A NAME="RD34406ST-13">13</A>
Elemental analysis is in agreement with the loss of carbon monoxide during the inlet
of the sample in the combustion chamber. Unfortunately, HRMS could not be obtained.
This compound of low polarity could not be ionized by the electrospray technique at
our disposal.