References and Notes
<A NAME="RG34606ST-1A">1a</A>
Modern Aldol Reactions
Vol. 2:
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
p.197
<A NAME="RG34606ST-1B">1b</A>
Johnson JS.
Evans DA.
Acc. Chem. Res.
2000,
33:
325
<A NAME="RG34606ST-2A">2a</A>
Kumagai N.
Matsunaga S.
Kinoshita T.
Harada S.
Okada S.
Sakamoto S.
Yamaguchi K.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
2169
<A NAME="RG34606ST-2B">2b</A>
Evans DA.
Downey CW.
Hubbs JL.
J. Am. Chem. Soc.
2003,
125:
8706
<A NAME="RG34606ST-2C">2c</A>
Mahrwald R.
Org. Lett.
2000,
2:
4011
<A NAME="RG34606ST-2D">2d</A>
Ishihara K.
Kondo S.
Yamamoto H.
J. Org. Chem.
2000,
65:
9125
<A NAME="RG34606ST-2E">2e</A>
Yamada YMA.
Yoshikawa N.
Sasai H.
Shibasaki M.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1871
For selected examples, see:
<A NAME="RG34606ST-3A">3a</A>
Gröger H.
Wilken J.
Angew. Chem. Int. Ed.
2001,
40:
529
<A NAME="RG34606ST-3B">3b</A>
Northrup AB.
Mangion IK.
Hettche F.
MacMillan DWC.
Angew. Chem. Int. Ed.
2004,
43:
2152
<A NAME="RG34606ST-3C">3c</A>
Northrup AB.
MacMillan DWC.
Science
2004,
305:
1752
<A NAME="RG34606ST-3D">3d</A>
Kumaragurubaran N.
Juhl K.
Zhuang W.
Bøgevig A.
Jørgensen KA.
J. Am. Chem. Soc.
2002,
124:
6254
<A NAME="RG34606ST-3E">3e</A>
Marigo M.
Wabnitz TC.
Fielenbach D.
Jørgensen KA.
Angew. Chem. Int. Ed.
2005,
44:
794
<A NAME="RG34606ST-3F">3f</A>
Torii H.
Nakadai M.
Ishihara K.
Saito S.
Yamamoto H.
Angew. Chem. Int. Ed.
2004,
43:
1983
<A NAME="RG34606ST-4A">4a</A>
List B.
Lerner RA.
Barbas CF.
J. Am. Chem. Soc.
2000,
122:
2395
<A NAME="RG34606ST-4B">4b</A>
Notz W.
List B.
J. Am. Chem. Soc.
2000,
122:
7386
<A NAME="RG34606ST-4C">4c</A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J. Am. Chem. Soc.
2001,
123:
5260
<A NAME="RG34606ST-4D">4d</A>
List B.
Acc. Chem. Res.
2004,
37:
548
<A NAME="RG34606ST-4E">4e</A>
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
<A NAME="RG34606ST-5A">5a</A>
Samanta S.
Liu J.
Dodda R.
Zhao C.-G.
Org. Lett.
2005,
7:
5321
<A NAME="RG34606ST-5B">5b</A>
Berkessel A.
Koch B.
Lex J.
Adv. Synth. Catal.
2004,
346:
1141
<A NAME="RG34606ST-5C">5c</A>
Hartikka A.
Arvidsson PI.
Tetrahedron: Asymmetry
2004,
15:
1983
<A NAME="RG34606ST-5D">5d</A>
Lacoste E.
Landais Y.
Schenk K.
Verlhac J.-B.
Vincent J.-M.
Tetrahedron Lett.
2004,
45:
8035
<A NAME="RG34606ST-5E">5e</A>
Cobb AJA.
Shaw DM.
Longbottom DA.
Gold JB.
Ley SV.
Org. Biomol. Chem.
2005,
3:
84
<A NAME="RG34606ST-5F">5f</A>
Gryko D.
Lipiński R.
Adv. Synth. Catal.
2005,
347:
1948
<A NAME="RG34606ST-5G">5g</A>
Vishnumaya RM.
Ginotra SK.
Singh VK.
Org. Lett.
2006,
8:
4097
<A NAME="RG34606ST-5H">5h</A>
Zheng J.-F.
Li Y.-X.
Zhang S.-Q.
Yang S.-T.
Wang X.-M.
Wang Y.-Z.
Bai J.
Liu F.-A.
Tetrahedron Lett.
2006,
47:
7793
<A NAME="RG34606ST-5I">5i</A>
Dinér P.
Amedjkouh M.
Org. Biomol. Chem.
2006,
4:
2091
<A NAME="RG34606ST-5J">5j</A>
Cheng C.
Sun J.
Wang C.
Zhang Y.
Wei S.
Jiang F.
Wu Y.
Chem. Commun.
2006,
215
For l-proline derivatives modified in the pyrrolidine ring used in direct aldol reaction,
see:
<A NAME="RG34606ST-5K">5k</A>
Hayashi Y.
Sumiya T.
Takahashi J.
Gotoh H.
Urushima T.
Shoji M.
Angew. Chem. Int. Ed.
2006,
45:
958
<A NAME="RG34606ST-5L">5l</A>
Gu L.
Yu M.
Wu X.
Zhang Y.
Zhao G.
Adv. Synth. Catal.
2006,
348:
2223
For l-proline-catalyzed direct aldol reaction leading to polyketide compounds, see:
<A NAME="RG34606ST-5M">5m</A>
Chowdari NS.
Ramachary DB.
Córdova A.
Barbas CF.
Tetrahedron Lett.
2002,
43:
9591
<A NAME="RG34606ST-5N">5n</A>
Casas J.
Engqvist M.
Ibrahem I.
Kaynak B.
Córdova A.
Angew. Chem. Int. Ed.
2005,
44:
1343
<A NAME="RG34606ST-5O">5o</A>
Córdova A.
Sundén H.
Xu Y.
Ibrahem I.
Zou W.
Engqvist M.
Chem. Eur. J.
2006,
12:
5446
<A NAME="RG34606ST-6A">6a</A>
Tang Z.
Jiang F.
Yu L.-T.
Cui X.
Gong L.-Z.
Mi A.-Q.
Jiang Y.-Z.
Wu Y.-D.
J. Am. Chem. Soc.
2003,
125:
5262
<A NAME="RG34606ST-6B">6b</A>
Tang Z.
Jiang F.
Yu L.-T.
Cui X.
Gong L.-Z.
Mi A.-Q.
Jiang Y.-Z.
Wu Y.-D.
Proc. Natl. Acad. Sci. U. S. A.
2004,
101:
5755
<A NAME="RG34606ST-6C">6c</A>
Tang Z.
Yang Z.-H.
Chen X.-H.
Cun L.-F.
Mi A.-Q.
Jiang Y.-Z.
Gong L.-Z.
J. Am. Chem. Soc.
2005,
127:
9285
<A NAME="RG34606ST-7A">7a</A>
Hoang L.
Bahmanyar S.
Houk KN.
List B.
J. Am. Chem. Soc.
2003,
125:
16
<A NAME="RG34606ST-7B">7b</A>
Bahmanyar S.
Houk KN.
Martin HJ.
List B.
J. Am. Chem. Soc.
2003,
125:
2475
<A NAME="RG34606ST-8A">8a</A>
Chen J.-R.
Lu H.-H.
Li X.-Y.
Cheng L.
Wan J.
Xiao W.-J.
Org. Lett.
2005,
7:
4543
<A NAME="RG34606ST-8B">8b</A>
Chen J.-R.
Li X.-Y.
Xing X.-N.
Xiao W.-J.
J. Org. Chem.
2006,
71:
8198
<A NAME="RG34606ST-9A">9a</A>
Guillena G.
Hita MC.
Nájera C.
Tetrahedron: Asymmetry
2006,
17:
729
<A NAME="RG34606ST-9B">9b</A>
Guillena G.
Hita MC.
Nájera C.
Tetrahedron: Asymmetry
2006,
17:
1027
<A NAME="RG34606ST-9C">9c</A>
Guillena G.
Hita MC.
Nájera C.
Tetrahedron: Asymmetry
2006,
17:
1493
<A NAME="RG34606ST-9D">9d</A>
Gryko D.
Kowalczyk B.
Zawadzki L.
Synlett
2006,
1059
<A NAME="RG34606ST-9E">9e</A>
Guizzetti S.
Benaglia M.
Pignataro L.
Puglisi A.
Tetrahedron: Asymmetry
2006,
17:
2754
<A NAME="RG34606ST-10">10</A>
Zhou Y.
Shan Z.
Tetrahedron: Asymmetry
2006,
17:
1671
<A NAME="RG34606ST-11A">11a</A>
Lattanzi A.
Org. Lett.
2005,
7:
2579
<A NAME="RG34606ST-11B">11b</A>
Lattanzi A.
Adv. Synth. Catal.
2006,
348:
339
<A NAME="RG34606ST-11C">11c</A>
Lattanzi A.
Tetrahedron: Asymmetry
2006,
17:
837
<A NAME="RG34606ST-11D">11d</A>
Lattanzi A.
Russo A.
Tetrahedron
2006,
62:
12264
Racemic NOBIN was synthesized according to procedures reported in the following references:
<A NAME="RG34606ST-12A">12a</A>
Ding K.
Xu Q.
Wang Y.
Liu J.
Yu Z.
Du B.
Wu Y.
Koshima H.
Matsuura T.
Chem. Commun.
1997,
693
<A NAME="RG34606ST-12B">12b</A>
Vyskočil S.
Smrčina M.
Lorenc M.
Kočovský P.
Hanuš V.
Polášek M.
Chem. Commun.
1998,
585
<A NAME="RG34606ST-13">13</A> (R)- and (S)-NOBIN were obtained by optical resolution according to the procedure reported in
the literature:
Ding K.
Wang Y.
Yun H.
Liu J.
Wu Y.
Terada M.
Okubo Y.
Mikami K.
Chem. Eur. J.
1999,
5:
1734
<A NAME="RG34606ST-14">14</A>
Procedure for the Synthesis of Catalysts 2 and 3
To a solution of N-carbobenzyloxy l-proline (320 mg, 1.26 mmol) in anyd CH2Cl2 (4 mL) and MeCN (4 mL) was added DMAP (80 mg, 1 mmol), EDC·HCl (368 mg, 3 mmol) at
0 °C under argon atmosphere. Stirring was mantained for 1 h, then (R)-or (S)-NOBIN (400 mg, 1.4 mmol) dissoved in anhyd DMF (2 mL) was cannulated in the reaction
vessel and stirring was mantained for 3 d at r.t. The solvent was removed, the crude
mixture was diluted with HCl solution (0.1 N) and extracted with CHCl3 (2 × 50 mL). The organic phase was then dried over Na2SO4. The crude mixture was purified by flash chromatography eluting with PE-Et2O (1:1) to PE-EtOAc (2:1) mixtures to give 400 mg (60%) and 380 mg (57%) yield, respectively,
as white gummy compounds. To N-carbobenzyloxy-l-prolinamide (R)-NOBIN (400 mg) dissolved in anhyd MeOH (8 mL) was added Pd/C (10% w/w). The reaction
mixture was stirred under H2 (1 atm) at 50 °C for 3 h. After cooling, the mixture was filtered over a pad of Celite®. The solvent was removed and the crude mixture was purified by flash chromatography
eluting with CHCl3-MeOH (2:1) mixture to give 2 (266 mg, 90%) as a white solid. Compound 3 was obtained with the same yield.
Compound 2: mp 199-201 °C (dec.); [α]D
23 -46.7 (c 0.25, EtOH). IR (neat): 3203, 3056, 2870, 1670, 1506, 818, 751 cm-1. 1H NMR (400 MHz, CDCl3): δ = 9.70 (br s, 1 H), 8.62 (d, 1 H, J = 9.0 Hz), 8.03-7.80 (m, 5 H), 7.41-7.31 (m, 4 H), 7.25-7.21 (m, 1 H), 7.03-6.99
(m, 1 H), 3.55-3.50 (m, 1 H), 2.58-2.53 (m, 1 H), 2.32-2.28 (m, 1 H), 1.90-1.87 (m,
1 H), 1.81-1.76 (m, 1 H), 1.50-1.27 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 174.0, 152.0, 136.0, 133.3, 133.1, 132.8, 131.1, 130.6, 130.0, 129.3, 128.3,
128.1, 127.1, 127.0, 125.3, 125.2, 124.3, 123.6, 120.4, 117.8, 113.6, 60.5, 46.6,
30.6, 25.6. ESI-MS: m/z 383 [M + H+]. Anal. Calcd (%) for C25H22N2O2: C, 78.51; H, 5.80; N, 7.32. Found: C, 78.70; H, 5.96; N, 7.18.
Compound 3: mp 215-218 °C (dec.). [α]D
18 -25.8 (c 0.20, EtOH). IR (neat): 3232, 3056, 2972, 1661, 1505, 865, 749 cm-1. 1H NMR (400 MHz, CDCl3): δ = 9.72 (br s, 1 H), 8.75 (d, 1 H, J = 9.0 Hz), 8.07-7.80 (m, 5 H), 7.43-7.31 (m, 4 H), 7.24-7.20 (m, 1 H), 7.03-6.99
(m, 1 H), 3.57-3.52 (m, 1 H), 2.35-2.31 (m, 1 H), 1.84-1.80 (m, 1 H), 1.69-1.62 (m,
1 H), 1.54-1.48 (m, 1 H), 1.30-1.20 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 174.0, 151.9, 136.0, 133.3, 133.1, 132.8, 131.0, 130.6, 130.0, 129.3, 128.3,
128.1, 127.1, 127.0, 125.0, 124.9, 124.2, 123.7, 119.9, 117.8, 113.6, 60.6, 46.1,
30.6, 25.3. ESI-MS: m/z = 383 [MH+]. Anal. Calcd (%) for C25H22N2O2: C, 78.51; H, 5.80; N, 7.32. Found: C, 78.39; H, 5.62; N, 7.20.
<A NAME="RG34606ST-15A">15a</A>
List B.
Hoang L.
Martin HJ.
Proc. Natl. Acad. Sci. U. S. A.
2004,
101:
5839
<A NAME="RG34606ST-15B">15b</A>
List B.
Chem. Commun.
2006,
819
<A NAME="RG34606ST-16">16</A>
Procedure for the Synthesis of Catalyst 6
N-Carbobenzyloxy-d-prolinamide-(R)-NOBIN (180 mg, 0.348 mmol) was stirred with Cs2CO3 (566 mg, 1.74 mmol) in MeCN (5 mL) at r.t. for 30 min. Then MeI (870 µL, 14 mmol)
was added and the mixture was stirred for 18 h. The solvent was removed, the crude
mixture was diluted with HCl solution (0.1 N) and extracted with CHCl3 (2 × 50 mL). The organic phase was then dried over Na2SO4. The crude mixture was purified by flash chromatography eluting with PE-EtOAc (6:4)
to give 124 mg (67%) of the methylated product. Deprotection of this compound, carried
out as previously reported for compound 2 and 3, furnished 88 mg (95%) of 6 as a white solid.
Compound 6: mp 167-171 °C (dec); [α]D
23 +33.9 (c 0.25, EtOH). IR (neat): 3443, 2927, 1658, 1507, 1249, 812, 753 cm-1. 1H NMR (400 MHz, CDCl3): δ = 9.70 (br s, 1 H), 8.05-7.85 (m, 6 H), 7.56-7.17 (m, 6 H), 3.95 (s, 3 H), 3.50-3.45
(m, 1 H), 3.37-3.32 (m, 2 H), 2.17-1.98 (m, 2 H), 1.33-1.20 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 173.0, 154.9, 138.2, 133.7, 133.0, 132.8, 131.0, 130.7, 129.5, 129.0, 128.5,
128.3, 127.6, 127.0, 126.0, 125.2, 125.1, 124.7, 124.0, 123.7, 115.5, 58.8, 58.3,
47.6, 29.9, 25.4. ESI-MS: m/z = 403 [M + H+]. Anal. Calcd (%) for C26H24N2O2: C, 78.76; H, 6.10; N, 7.07. Found: C, 78.92; H, 6.25; N, 7.21.
<A NAME="RG34606ST-17">17</A>
Typical Procedure for the Aldol Reaction
In a capped vial under air catalyst 3 (3.8 mg, 0.01 mmol), aldehyde (0.2 mmol) and hexane (400 µL) were added at r.t. To
this stirred mixture, acetone (44 µL, 0.6 mmol) was added. Upon completion of the
reaction, monitored by TLC, the reaction mixture was directly purified by flash chromatography
(PE-EtOAc 90:10 to 60:40 mixtures) to provide aldol 5. Analytical data of aldols matched those reported in the literature.
[5]
[6]
<A NAME="RG34606ST-18">18</A>
For the sake of comparison, the optimized Gong’s catalyst at -25 °C in cyclohexanone
furnished the aldol product as anti/syn 95:5 ratio in 83% yield. The anti-isomer was isolated in 79% ee.
[6c]
Asymmetric organocatalyzed aldol reactions are generally performed using 10-30 mol%
of catalyst loading. Few examples reported lower amounts of the promoters, see:
<A NAME="RG34606ST-19A">19a</A>
Córdova A.
Tetrahedron Lett.
2004,
45:
3949
<A NAME="RG34606ST-19B">19b</A>
Kano T.
Takai J.
Tokuda O.
Maruoka O.
Angew. Chem. Int. Ed.
2005,
44:
3055
<A NAME="RG34606ST-19C">19c</A>
Krattiger P.
Kovasy R.
Revell JD.
Ivan S.
Wennemers H.
Org. Lett.
2005,
7:
1101
<A NAME="RG34606ST-19D">19d</A>
Jiang M.
Zhu S.-F.
Yang Y.
Gong L.-Z.
Zhou X.-G.
Zhou Q.-L.
Tetrahedron: Asymmetry
2006,
17:
384
<A NAME="RG34606ST-19E">19e</A>
Kano T.
Tokuda O.
Maruoka K.
Tetrahedron Lett.
2006,
47:
7423
<A NAME="RG34606ST-19F">19f</A>
See ref. 6c.
<A NAME="RG34606ST-20">20</A> For the only example of stoichiometric use of the ketone donors in organocatalyzed
asymmetric aldol reaction, see:
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J. Am. Chem. Soc.
2006,
128:
734
<A NAME="RG34606ST-21">21</A>
One way to achieve this goal might be the employment of proper mixtures of hexane
and ethereal cosolvents.