Subscribe to RSS
DOI: 10.1055/s-2007-973904
Stereoselective Conjugate Additions to γ-Lactams: Synthesis of Polysubstituted Benzo-Fused Indolizidine Systems
Publication History
Publication Date:
13 April 2007 (online)

Abstract
The stereoselectivity of the conjugate addition of carbon nucleophiles to the bicyclic γ-lactam unit of dihydropyrrolo[2,1-a]isoquinolones depends on the nature of the nucleophile and the substituent at the angular position.
Key words
conjugate addition reactions - lactams - stereoselective synthesis - nucleophiles - carbanions
- 1a 
             
            Perlmutter P. Conjugate Addition Reactions in Organic Synthesis, In Tetrahedron Organic Chemistry Series Vol. 9:Baldwin JE.Magnus PD. Pergamon Press; Oxford: 1992.
- 1b 
             
            Rossiter BE.Swingle NM. Chem. Rev. 1992, 92: 771
- 1c 
             
            Leonard J.Díez-Barra E.Merino S. Eur. J. Org. Chem. 1998, 2051
- 1d 
             
            Yamamguchi M. In Comprehensive Asymmetric Catalysis I-III Vol. 3:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. p.1121-1139
- 1e 
             
            Jha SC.Joshi NN. ARKIVOC 2002, (vii): 167
- 1f 
             
            Iguchi M.Yamada K.Tomioka K. Organolithiums in Enantioselective Synthesis, In Topics in Organometallic Chemistry Vol. 5:Hodgson DM. Springer; Berlin: 2003. p.21-36
- 1g 
             
            Davies SG.Smith AD.Price PD. Tetrahedron: Asymmetry 2005, 16: 2833
- 1h 
             
            Wu G.Huang M. Chem. Rev. 2006, 106: 2596
- See, for example:
- 2a 
             
            Tamaru Y.Harada T.Iwawoto H.Yoshida Z.-I. J. Am. Chem. Soc. 1978, 100: 5221
- 2b 
             
            Mpango GB.Mahalanabis KK.Damghani ZM.Snieckus V. Tetrahedron Lett. 1980, 21: 4823
- 2c 
             
            Mpango GB.Snieckus V. Tetrahedron Lett. 1980, 21: 4827
- 2d 
             
            Hashimoto M.Hashimoto K.Shirahama H. Tetrahedron 1996, 52: 1931
- 2e 
             
            Forns P.Díez A.Rubiralta M. Tetrahedron 1996, 52: 3563
- 2f 
             
            Forns P.Díez A.Rubiralta M. J. Org. Chem. 1996, 61: 7882
- 2g 
             
            Amat M.Pérez P.Llor N.Bosch J. Org. Lett. 2002, 4: 2787
- For reviews on synthetic uses of α-lithiodithioacetals, see:
- 3a 
             
            Seebach D. Synthesis 1969, 17Reference Ris Wihthout Link
- 3b 
             
            Krief A. Tetrahedron 1980, 36: 2531Reference Ris Wihthout Link
- 3c 
             
            Page PCB.van Niel MB.Prodger JC. Tetrahedron 1989, 45: 7643Reference Ris Wihthout Link
- 3d 
             
            Yus M.Nájera C.Foubelo F. Tetrahedron 2003, 59: 6147Reference Ris Wihthout Link
- 4a 
             
            Tamaru Y.Harada T.Iwamoto H.Yoshida Z. J. Am. Chem. Soc. 1978, 100: 5221
- 4b 
             
            Tamaru Y.Harada T.Yoshida Z. J. Am. Chem. Soc. 1979, 101: 1316
- 4c 
             
            Gómez-Pardo D.Desmaele D.d’Angelo J. Tetrahedron Lett. 1992, 33: 6632
- 5 
             
            Brewster AG.Broady S.Hughes M.Moloney MG.Woods G. Org. Biomol. Chem. 2004, 2: 1800 ; and references therein
- 6a 
             
            Manteca I.Sotomayor N.Lete E. Tetrahedron Lett. 1996, 33: 7841
- 6b 
             
            Collado MI.Sotomayor N.Villa M.-J.Lete E. Tetrahedron Lett. 1996, 37: 6193
- 6c 
             
            Collado MI.Manteca I.Sotomayor N.Villa MJ.Lete E. J. Org. Chem. 1997, 62: 2080
- 6d 
             
            Manteca I.Etxarri B.Ardeo A.Arrasate S.Osante I.Sotomayor N.Lete E. Tetrahedron 1998, 54: 12361
- For reviews on Parham cyclization, see:
- 7a 
             
            Parham WE.Bradsher CK. Acc. Chem. Res. 1982, 15: 300
- 7b 
             
            Gray M.Tinkl M.Snieckus V. In Comprehensive Organometallic Chemistry II Vol. 11:Abel EW.Stone FGA.Wilkinson G. Pergamon; Exeter: 1995. p.66-92
- 7c 
             
            Ardeo A.Collado MI.Osante I.Ruiz J.Sotomayor N.Lete E. In Targets in Heterocyclic Systems Vol. 5:Atanassi O.Spinelli D. Italian Society of Chemistry; Rome: 2001. p.393-418
- 7d 
             
            Mealy MM.Bailey WF. J. Organomet. Chem. 2002, 649: 59
- 7e 
             
            Sotomayor N.Lete E. Curr. Org. Chem. 2003, 7: 275
- 7f 
             
            Arrasate S.Sotomayor N.Lete E. In New Methods for the Asymmetric Synthesis of Nitrogen HeterocyclesVicario JL.Badía D.Carrillo L. Research Signpost; India: 2005. p.223-248
- For examples of the tandem Parham cyclization-α-amido-alkylation reaction, see:
- 8a 
             
            González-Temprano I.Sotomayor N.Lete E. Synlett 2002, 593
- 8b 
             
            González I.Osante I.Sotomayor N.Lete E. J. Org. Chem. 2004, 69: 3875
- 8c 
             
            Osante I.Lete E.Sotomayor N. Tetrahedron Lett. 2004, 45: 1253
- For reviews on N-acyliminium ion cyclizations, see:
- 9a 
             
            Speckamp WN.Hiemstra H. Tetrahedron 1985, 41: 4367
- 9b 
             
            Hiemstra H.Speckamp WN. In The Alkaloids Vol. 32: Academic Press; New York: 1988. p.271-339
- 9c 
             
            Hiemstra H.Speckamp WN. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.1047-1082
- 9d 
             
            de Koning H.Speckamp WN. Stereoselective Synthesis, In Houben-Weyl, Methoden der organischen Chemie Vol. E21b:Helmchen G.Hoffmann RW.Muzler J.Schaumann E. Thieme; Stuttgart: 1996. p.1952-2010
- 9e 
             
            Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817
- 9f 
             
            Marson CM. ARKIVOC 2001, (i): 1
- 9g 
             
            Maryanoff BE.Zhang H.-C.Cohen JH.Turchi IJ.Maryanoff CA. Chem. Rev. 2004, 104: 1431
- 9h 
             
            Royer J.Bonin M.Micouin L. Chem. Rev. 2004, 104: 2311
- 9i 
             
            Dobbs AP.Rossiter S. In Comprehensive Organic Functional Group Transformations II Vol. 3:Katritzky AR.Taylor RJK. Elsevier; Oxford: 2005. p.419-450
- 10 
             
            Etxarri B.González-Temprano I.Manteca I.Sootmayor N.Lete E. Synlett 1999, 1486
- 11 Conjugate addition reaction of enolates and cuprates to the unactivated dihydropyrroloisoquinolones
            always failed, and unreacted starting material was always recovered:  
            González-Temprano I. PhD Thesis Universidad del País Vasco; Spain: 2003.Reference Ris Wihthout Link
- 13 See for instance:  
            Osante I.Abdullah MN.Arrasate S.Sotomayor N.Lete E. ARKIVOC 2007, (iv): 206
- For representative examples, see:
- 16a 
             
            Meyers AI.Snyder L. J. Org. Chem. 1992, 57: 3814
- 16b 
             
            Meyers AI.Snyder L. J. Org. Chem. 1993, 58: 36
- 16c 
             
            Andres CJ.Lee PH.Nguyen TH.Meyers AI. J. Org. Chem. 1995, 60: 3189
- 16d 
             
            Dyer J.Keeling S.Moloney MG. Tetrahedron Lett. 1996, 37: 4573
- 16e 
             
            Dyer J.King A.Keeling S.Moloney MG. J. Chem. Soc., Perkin Trans. 1 2000, 2793
- 16f 
             
            Chan PWH.Cottrel JF.Moloney MG. J. Chem. Soc., Perkin Trans. 1 2001, 2997
- 16g 
             
            Mamal A.Hughes NE.Wurthmann A.Madalengoitia JS. J. Org. Chem. 2000, 66: 6483
References and Notes
See reference 6c.
14Typical Procedure: MeLi (1.50 mL of a 1.6 M solution, 2.4 mmol) was added dropwise over a suspension of CuI (228 mg, 1.2 mmol) in anhyd THF (5 mL) at 0 °C. After 30 min, the mixture was cooled to -78 ºC, and a solution of lactam 2a (157 mg, 0.4 mmol) in THF (10 mL) was added. The reaction mixture was stirred for 3 h, allowed to warm to 0 ºC, and stirred at this temperature for 12 h. The reaction was quenched by sequential addition of 12% aq NH4OH (20 mL) and sat. NH4Cl (10 mL) at 0 °C. After the mixture was allowed to warm to r.t., the organic layer was separated, and the aqueous phase was extracted with CH2Cl2 (3 × 15 mL). The combined organic extracts were dried (Na2SO4) and concentrated in vacuo. Flash column chromatography (silica gel, 70% hexane-EtOAc) afforded the pyrroloisoquinolone 6a as a colorless oil (140 mg, 85%) as a single diastereomer. IR (CHCl3): 1736, 1692 cm-1. 1H NMR (CDCl3): δ = 1.36 (t, J = 6.7 Hz, 3 H), 1.41 (s, 3 H), 2.61-3.04 (m, 4 H), 3.36 (d, J = 11.9 Hz, 1 H), 3.84 (s, 6 H), 4.29-4.32 (m, 1 H), 5.21 (s, 2 H), 6.57 (s, 1 H), 6.69 (s, 1 H), 7.25-7.35 (m, 5 H). 13C NMR (CDCl3): δ = 13.9, 21.9, 28.8, 34.8, 44.2, 55.6, 55.7, 55.9, 61.5, 66.9, 107.6, 11.7, 124.9, 127.8, 128.0, 128.4, 133.2, 135.4, 147.6, 147.7, 166.3, 169.2. MS (EI): m/z (rel. intensity) = 409 (8) [M+], 395 (26), 394 (100), 259 (32), 258 (14), 244 (20), 206 (10), 204 (10), 91 (52). Anal. Calcd for C24H27NO5: C, 70.40; H, 6.65; N, 3.42. Found: C, 70.35; H, 6.43; N, 3.16.
15We have observed that adducts, once formed, do not appear to undergo reversal to the unsaturated lactam, precluding the possibility of thermodynamic factors being responsible for the stereochemical results.
 
    