ABSTRACT
Developmental transitions of the bipotential gonad to the embryonic ovary and thence
to the follicle-filled mature ovary are expected to be coordinated by sets of transcription
factors. We infer candidate lists here, focusing on somatic cell fate and function.
For the mouse, developmental stages of ovary differentiation are relatively discretely
phased, and provide a unique tool to investigate the intricate mechanisms that lead
to the acquisition of female reproductive competence. Cross-platform gene expression
profiles supplement functional studies of specific genes and comparative information
about human biology. Available data suggest that: (1) peak transcription activity
just precedes the two most decisive steps of early ovary differentiation (i.e., entry
into meiosis and follicle formation); (2) alternating peak gene activities in oocytes
and somatic cells may reflect reciprocal interactions; and (3) in addition to stable
states of chromatin modification associated with morphogenesis, some features of differentiation
are labile, contingent on the expression state of critical factors. Examples are the
maintenance of somatic sex determination by continued Foxl2 action and the reversible
maintenance of follicles in a quiescent state by nuclear Foxo3.
KEYWORDS
Ovary - development - premature ovarian failure - follicle formation - follicle dynamics
- sex determination - transcription factors - forkhead domain - granulosa cells
REFERENCES
- 1 Tokarz R R.
Oogonial proliferation, oogenesis, and folliculogenesis in nonmammalian vertebrates. In: Jones RE The Vertebrate Ovary: Comparative Biology and Evolution. New York;
Plenum Press 1971: 145-179
- 2
Byskov A G, Faddy M J, Lemmen J G et al..
Eggs forever?.
Differentiation.
2005;
73
438-446
- 3
Eggan K, Jurga S, Gosden R et al..
Ovulated oocytes in adult mice derive from non-circulating germ cells.
Nature.
2006;
441
1109-1114
- 4
Gilboa L, Lehmann R.
How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila
females and males.
Development.
2004;
131
4895-4905
- 5
McLaren A.
Development of the mammalian gonad: the fate of the supporting cell lineage.
Bioessays.
1991;
13
151-156
- 6
Eppig J J, Chesnel F, Hirao Y et al..
Oocyte control of granulosa cell development: how and why.
Hum Reprod.
1997;
12
127-132
- 7
Matzuk M M, Burns K H, Viveiros M M et al..
Intercellular communication in the mammalian ovary: oocytes carry the conversation.
Science.
2002;
296
2178-2180
- 8
Hirshfield A N.
Development of follicles in the mammalian ovary.
Int Rev Cytol.
1991;
124
43-101
- 9
Canipari R.
Oocyte-granulosa cell interactions.
Hum Reprod Update.
2000;
6
279-289
- 10
Berkholtz C B, Shea L D, Woodruff T K.
Extracellular matrix functions in follicle maturation.
Semin Reprod Med.
2006;
24
262-269
- 11
Choi Y, Rajkovic A.
Genetics of early mammalian folliculogenesis.
Cell Mol Life Sci.
2006;
63
579-590
- 12
Matzuk M M.
Revelations of ovarian follicle biology from gene knockout mice.
Mol Cell Endocrinol.
2000;
163
61-66
- 13
Park S Y, Jameson J L.
Minireview: transcriptional regulation of gonadal development and differentiation.
Endocrinology.
2005;
146
1035-1042
- 14
Pangas S A, Rajkovic A.
Transcriptional regulation of early oogenesis: in search of masters.
Hum Reprod Update.
2006;
12
65-76
- 15
Brennan J, Capel B.
One tissue, two fates: molecular genetic events that underlie testis versus ovary
development.
Nat Rev Genet.
2004;
5
509-521
- 16
Byskov A G.
Differentiation of mammalian embryonic gonad.
Physiol Rev.
1986;
66
71-117
- 17
Gosden R G.
Restitution of fertility in sterilized mice by transferring primordial ovarian follicles.
Hum Reprod.
1990;
5
499-504
- 18
Byskov A G, Guoliang X, Andersen C Y.
The cortex-medulla oocyte growth pattern is organized during fetal life: an in-vitro
study of the mouse ovary.
Mol Hum Reprod.
1997;
3
795-800
- 19
Pan H, O'Brien M J, Wigglesworth K et al..
Transcript profiling during mouse oocyte development and the effect of gonadotropin
priming and development in vitro.
Dev Biol.
2005;
286
493-506
- 20
Nef S, Schaad O, Stallings N R et al..
Gene expression during sex determination reveals a robust female genetic program at
the onset of ovarian development.
Dev Biol.
2005;
287
361-377
- 21
Small C L, Shima J E, Uzumcu M et al..
Profiling gene expression during the differentiation and development of the murine
embryonic gonad.
Biol Reprod.
2005;
72
492-501
- 22
Zeller R, Duboule D.
Dorso-ventral limb polarity and origin of the ridge: on the fringe of independence?.
Bioessays.
1997;
19
541-546
- 23
Birk O S, Casiano D E, Wassif C A et al..
The LIM homeobox gene Lhx9 is essential for mouse gonad formation.
Nature.
2000;
403
909-913
- 24
Pellegrini M, Mansouri A, Simeone A et al..
Dentate gyrus formation requires Emx2.
Development.
1996;
122
3893-3898
- 25
Pellegrini M, Pantano S, Lucchini F et al..
Emx2 developmental expression in the primordia of the reproductive and excretory systems.
Anat Embryol (Berl).
1997;
196
427-433
- 26
Jeays-Ward K, Hoyle C, Brennan J et al..
Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing
mammalian gonad.
Development.
2003;
130
3663-3670
- 27
Swain A, Narvaez V, Burgoyne P et al..
Dax1 antagonizes Sry action in mammalian sex determination.
Nature.
1998;
391
761-767
- 28
Meeks J J, Weiss J, Jameson J L.
Dax1 is required for testis determination.
Nat Genet.
2003;
34
32-33
- 29
Park S Y, Meeks J J, Raverot G et al..
Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation
during testis development.
Development.
2005;
132
2415-2423
- 30
Jeays-Ward K, Dandonneau M, Swain A.
Wnt4 is required for proper male as well as female sexual development.
Dev Biol.
2004;
276
431-440
- 31
Biason-Lauber A, De Filippo G, Konrad D et al..
WNT4 deficiency-a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser
syndrome: a case report.
Hum Reprod.
2007;
22
224-229
- 32
Parma P, Radi O, Vidal V et al..
R-spondin1 is essential in sex determination, skin differentiation and malignancy.
Nat Genet.
2006;
38
1304-1309
- 33
Capel B.
R-spondin1 tips the balance in sex determination.
Nat Genet.
2006;
38
1233-1234
- 34
Kim S, Kettlewell J R, Anderson R C et al..
Sexually dimorphic expression of multiple doublesex-related genes in the embryonic
mouse gonad.
Gene Expr Patterns.
2003;
3
77-82
- 35
Luoh S W, Bain P A, Polakiewicz R D et al..
Zfx mutation results in small animal size and reduced germ cell number in male and
female mice.
Development.
1997;
124
2275-2284
- 36
Cui S, Ross A, Stallings N et al..
Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice.
Development.
2004;
131
4095-4105
- 37
Jorgensen J S, Gao L.
Irx3 is differentially up-regulated in female gonads during sex determination.
Gene Expr Patterns.
2005;
5
756-762
- 38
Yomogida K, Ohtani H, Harigae H et al..
Developmental stage- and spermatogenic cycle-specific expression of transcription
factor GATA-1 in mouse Sertoli cells.
Development.
1994;
120
1759-1766
- 39
Vendola K, Zhou J, Wang J et al..
Androgens promote oocyte insulin-like growth factor I expression and initiation of
follicle development in the primate ovary.
Biol Reprod.
1999;
61
353-357
- 40
Peters H, Levy E, Crone M.
Deoxyribonucleic acid synthesis in oocytes of mouse embryos.
Nature.
1962;
195
915-916
- 41
Falender A E, Shimada M, Lo Y K et al..
TAF4b, a TBP associated factor, is required for oocyte development and function.
Dev Biol.
2005;
288
405-419
- 42
Britt K L, Stanton P G, Misso M et al..
The effects of estrogen on the expression of genes underlying the differentiation
of somatic cells in the murine gonad.
Endocrinology.
2004;
145
3950-3960
- 43
Buck Louis G M, Lynch C D, Cooney M A.
Environmental influences on female fecundity and fertility.
Semin Reprod Med.
2006;
24
147-155
- 44
Reynaud K, Cortvrindt R, Verlinde F et al..
Number of ovarian follicles in human fetuses with the 45,X karyotype.
Fertil Steril.
2004;
81
1112-1119
- 45
Burgoyne P S, Baker T G.
Perinatal oocyte loss in XO mice and its implications for the aetiology of gonadal
dysgenesis in XO women.
J Reprod Fertil.
1985;
75
633-645
- 46
Schlessinger D, Herrera L, Crisponi L et al..
Genes and translocations involved in POF.
Am J Med Genet.
2002;
111
328-333
- 47
Liang L, Soyal S M, Dean J.
FIGalpha, a germ cell specific transcription factor involved in the coordinate expression
of the zona pellucida genes.
Development.
1997;
124
4939-4947
- 48
Uda M, Ottolenghi C, Crisponi L et al..
Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development.
Hum Mol Genet.
2004;
13
1171-1181
- 49
Loffler K A, Zarkower D, Koopman P.
Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome:
FOXL2 is a conserved, early-acting gene in vertebrate ovarian development.
Endocrinology.
2003;
144
3237-3243
- 50
Ottolenghi C, Omari S, Garcia-Ortiz J E et al..
Foxl2 is required for commitment to ovary differentiation.
Hum Mol Genet.
2005;
14
2053-2062
- 51
Crisponi L, Deiana M, Loi A et al..
The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus
inversus syndrome.
Nat Genet.
2001;
27
159-166
- 52
Nallathambi J, Moumne L, De Baere E et al..
A novel polyalanine expansion in FOXL2: the first evidence for a recessive form of
the blepharophimosis syndrome (BPES) associated with ovarian dysfunction.
Hum Genet.
2007;
121
107-112
- 53
Harris S E, Chand A L, Winship I M et al..
Identification of novel mutations in FOXL2 associated with premature ovarian failure.
Mol Hum Reprod.
2002;
8
729-733
- 54
Ellsworth B S, Egashira N, Haller J L et al..
FOXL2 in the pituitary: molecular, genetic, and developmental analysis.
Mol Endocrinol.
2006;
20
2796-2805
- 55
Schmidt D, Ovitt C E, Anlag K et al..
The murine winged-helix transcription factor Foxl2 is required for granulosa cell
differentiation and ovary maintenance.
Development.
2004;
131
933-942
- 56
Fraser I S, Shearman R P, Smith A et al..
An association among blepharophimosis, resistant ovary syndrome, and true premature
menopause.
Fertil Steril.
1988;
50
747-751
- 57
Couse J F, Hewitt S C, Bunch D O et al..
Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and
beta.
Science.
1999;
286
2328-2331
- 58
Jefferson W, Newbold R, Padilla-Banks E et al..
Neonatal genistein treatment alters ovarian differentiation in the mouse: inhibition
of oocyte nest breakdown and increased oocyte survival.
Biol Reprod.
2006;
74
161-168
- 59
Pailhoux E, Vigier B, Chaffaux S et al..
A 11.7-kb deletion triggers intersexuality and polledness in goats.
Nat Genet.
2001;
29
453-458
- 60
Dong J, Albertini D F, Nishimori K et al..
Growth differentiation factor-9 is required during early ovarian folliculogenesis.
Nature.
1996;
383
531-535
- 61
Paredes A, Romero C, Dissen G A et al..
TrkB receptors are required for follicular growth and oocyte survival in the mammalian
ovary.
Dev Biol.
2004;
267
430-449
- 62
Spears N, Molinek M D, Robinson L L et al..
The role of neurotrophin receptors in female germ-cell survival in mouse and human.
Development.
2003;
130
5481-5491
- 63
McGee E A, Hsueh A J.
Initial and cyclic recruitment of ovarian follicles.
Endocr Rev.
2000;
21
200-214
- 64
Skinner M K.
Regulation of primordial follicle assembly and development.
Hum Reprod Update.
2005;
11
461-471
- 65
Holt J E, Jackson A, Roman S D et al..
CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the
neonatal mouse ovary.
Dev Biol.
2006;
293
449-460
- 66
Gruijters M J, Visser J A, Durlinger A L et al..
Anti-Mullerian hormone and its role in ovarian function.
Mol Cell Endocrinol.
2003;
211
85-90
- 67
Castrillon D H, Miao L, Kollipara R et al..
Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a.
Science.
2003;
301
215-218
- 68
Hosaka T, Biggs III W H, Tieu D et al..
Disruption of forkhead transcription factor (FOXO) family members in mice reveals
their functional diversification.
Proc Natl Acad Sci USA.
2004;
101
2975-2980
- 69
Reddy P, Shen L, Ren C et al..
Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem
cell factor during follicular activation and development.
Dev Biol.
2005;
281
160-170
- 70
Shi F, LaPolt P S.
Relationship between FoxO1 protein levels and follicular development, atresia, and
luteinization in the rat ovary.
J Endocrinol.
2003;
179
195-203
- 71
Kirkwood T B.
Genes that shape the course of ageing.
Trends Endocrinol Metab.
2003;
14
345-347
- 72
Pisarska M D, Bae J, Klein C et al..
Forkhead l2 is expressed in the ovary and represses the promoter activity of the steroidogenic
acute regulatory gene.
Endocrinology.
2004;
145
3424-3433
- 73
Mattiske D, Kume T, Hogan B L.
The mouse forkhead gene Foxc1 is required for primordial germ cell migration and antral
follicle development.
Dev Biol.
2006;
290
447-458
- 74
Benedict J C, Lin T M, Loeffler I K et al..
Physiological role of the aryl hydrocarbon receptor in mouse ovary development.
Toxicol Sci.
2000;
56
382-388
- 75
Balciuniene J, Bardwell V J, Zarkower D.
Mice mutant in the DM domain gene Dmrt4 are viable and fertile but have polyovular
follicles.
Mol Cell Biol.
2006;
26
8984-8991
- 76
Ottolenghi C, Fellous M, Barbieri M et al..
Novel paralogy relations among human chromosomes support a link between the phylogeny
of doublesex-related genes and the evolution of sex determination.
Genomics.
2002;
79
333-343
- 77
Veith A M, Klattig J, Dettai A et al..
Male-biased expression of X-chromosomal DM domain-less Dmrt8 genes in the mouse.
Genomics.
2006;
88
185-195
- 78
Weiss J, Meeks J J, Hurley L et al..
Sox3 is required for gonadal function, but not sex determination, in males and females.
Mol Cell Biol.
2003;
23
8084-8091
- 79
Hiroi H, Christenson L K, Chang L et al..
Temporal and spatial changes in transcription factor binding and histone modifications
at the steroidogenic acute regulatory protein (stAR) locus associated with stAR transcription.
Mol Endocrinol.
2004;
18
791-806
- 80
Ottolenghi C, Uda M, Crisponi L et al..
Determination and stability of sex.
Bioessays.
2007;
29
15-25
- 81
Clark K L, Halay E D, Lai E et al..
Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone
H5.
Nature.
1993;
364
412-420
- 82
Cirillo L A, McPherson C E, Bossard P et al..
Binding of the winged-helix transcription factor HNF3 to a linker histone site on
the nucleosome.
EMBO J.
1998;
17
244-254
- 83
Cirillo L, Zaret K.
Developmental biology. A linker histone restricts muscle development.
Science.
2004;
304
1607-1609
- 84
Carroll J S, Brown M.
Estrogen receptor target gene: an evolving concept.
Mol Endocrinol.
2006;
20
1707-1714
- 85
Cole S W, Galic Z, Zack J A.
Controlling false-negative errors in microarray differential expression analysis:
a PRIM approach.
Bioinformatics.
2003;
19
1808-1816
David Schlessinger
TRIAD Building, 333 Cassell Drive
Suite 3000, Baltimore, MD 21224
Email: SchlessingerD@grc.nia.nih.gov