References and Notes
<A NAME="RG15407ST-1A">1a</A>
Shen W.
Kunzer A.
Org. Lett.
2002,
4:
1315
<A NAME="RG15407ST-1B">1b</A>
Huh DH.
Jeong JS.
Lee HB.
Ryu H.
Kim YG.
Tetrahedron
2002,
58:
9925
<A NAME="RG15407ST-1C">1c</A>
Li P.
Alper H.
J. Org. Chem.
1986,
51:
4354
<A NAME="RG15407ST-2A">2a</A>
Zapata AJ.
Ruiz J.
J. Organomet. Chem.
1994,
479:
C6
<A NAME="RG15407ST-2B">2b</A>
Shen W.
Wang L.
J. Org. Chem.
1999,
64:
8873
<A NAME="RG15407ST-2C">2c</A>
Lin ST.
Lee CC.
Liang DW.
Tetrahedron
2000,
56:
9619
<A NAME="RG15407ST-3">3</A>
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
13:
3769
<A NAME="RG15407ST-4">4</A>
Wang L.
Li P.
Yan J.
Wu Z.
Tetrahedron Lett.
2003,
44:
4685
<A NAME="RG15407ST-5A">5a</A>
Hirao T.
Masunaga T.
Ohshiro Y.
Agawa T.
J. Org. Chem.
1981,
46:
3745
<A NAME="RG15407ST-5B">5b</A>
Abbas S.
Hayes CJ.
Worden S.
Tetrahedron Lett.
2000,
41:
3215
<A NAME="RG15407ST-5C">5c</A>
Kuang C.
Senboku H.
Tokuda M.
Tetrahedron
2002,
58:
1491
<A NAME="RG15407ST-5D">5d</A>
Ranu BC.
Samanta S.
Guchhait SK.
J. Org. Chem.
2001,
66:
4102
<A NAME="RG15407ST-5E">5e</A>
Horibe H.
Kondo K.
Okuno H.
Aoyama T.
Synthesis
2004,
986
<A NAME="RG15407ST-6A">6a</A>
Uenishi J.
Kawahama R.
Shiga Y.
Yonemitsu O.
Tsuji J.
Tetrahedron Lett.
1996,
37:
6759
<A NAME="RG15407ST-6B">6b</A>
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1998,
63:
8965
<A NAME="RG15407ST-7A">7a</A>
Xu C.
Negishi E.
Tetrahedron Lett.
1999,
40:
431
<A NAME="RG15407ST-7B">7b</A>
Shen W.
Synlett
2000,
737
<A NAME="RG15407ST-7C">7c</A>
Ogasawara M.
Ikeda H.
Hayashi T.
Angew. Chem. Int. Ed.
2000,
39:
1042
<A NAME="RG15407ST-8A">8a</A>
Lee HB.
Huh DH.
Oh JS.
Min G.-H.
Kim BH.
Lee DH.
Hwang JK.
Kim YG.
Tetrahedron
2001,
57:
8283
<A NAME="RG15407ST-8B">8b</A>
Kabalka GW.
Dong G.
Venkataiah B.
Tetrahedron Lett.
2005,
46:
763
<A NAME="RG15407ST-8C">8c</A>
Shi J.
Zeng X.
Negishi E.
Org. Lett.
2003,
5:
1825
<A NAME="RG15407ST-9">9</A>
Shen W.
Thomas SA.
Org. Lett.
2000,
2:
2857
<A NAME="RG15407ST-10A">10a</A>
Ramirez F.
Desai NB.
McKelvie N.
J. Am. Chem. Soc.
1962,
84:
1745
<A NAME="RG15407ST-10B">10b</A>
Raw SA.
Reid M.
Roman E.
Taylor RJK.
Synlett
2004,
819
<A NAME="RG15407ST-10C">10c</A>
Shastin V.
Korotchenko VN.
Nenajdenko VG.
Balenkova ES.
Synthesis
2001,
2081
<A NAME="RG15407ST-11">11</A>
Fleming I.
Barbero A.
Walter D.
Chem. Rev.
1997,
97:
2063
<A NAME="RG15407ST-12A">12a</A>
Eisch JJ.
Foxton MW.
J. Org. Chem.
1971,
36:
3520
<A NAME="RG15407ST-12B">12b</A>
Miller RB.
McGarvey G.
J. Org. Chem.
1978,
43:
4424
<A NAME="RG15407ST-12C">12c</A>
Brook MA.
Neuy A.
J. Org. Chem.
1990,
55:
3609
<A NAME="RG15407ST-12D">12d</A>
Tamao K.
Akita M.
Maeda K.
Kumada M.
J. Org. Chem.
1987,
52:
1100
<A NAME="RG15407ST-12E">12e</A>
Nagao M.
Asano K.
Umeda K.
Katayama H.
Ozawa F.
J. Org. Chem.
2005,
70:
10511
<A NAME="RG15407ST-13A">13a</A>
Pawluc P.
Marciniec B.
Hreczycho G.
Gaczewska B.
Itami Y.
J. Org. Chem.
2005,
70:
370
<A NAME="RG15407ST-13B">13b</A>
Pawluc P.
Hreczycho G.
Marciniec B.
J. Org. Chem.
2006,
71:
8676
<A NAME="RG15407ST-14">14</A>
A Typical Procedure for the Synthesis of 1,1-Dibromo-2-arylethenes and Spectroscopic
Data of Selected Products: N-Bromosuccinimide (3.55 g, 20 mmol) was added to the solution of the corresponding
1,1-bis(silyl)-2-arylethene (2 mmol) in anhyd MeCN (20 mL) and the suspension was
stirred at r.t. for the appropriate time (see Table
[1]
). The solvent was then evaporated and the mixture was extracted with n-hexane (50 mL). After extraction with an aqueous solution of Na2S2O3 (5%, 50 mL) the organic layer was concentrated and the crude product was preloaded
on to silica. 1,1-Dibromo-2-arylethenes were purified by silica chromatography, eluting
with n-hexane-EtOAc (25:1).
1,1-Dibromo-2-(3-methoxyphenyl)ethene (4): yield: 0.514 g, 88%; yellowish oil. 1H NMR (CDCl3): δ = 3.86 (3 H, Me), 6.88-6.96 (m, 2 H), 7.30-7.34 (m, 1 H), 7.60 (s, 1 H, CH=),
7.68-7.72 (m, 1 H). 13C NMR (CDCl3): δ = 55.2 (3 H, Me), 89.6 (=CBr2), 110.3, 121.2, 124.2, 128.8, 129.9 (Ar), 132.8 (CH=), 156.4 (>COMe). MS (EI): m/z (%rel. int.) = 292 (56) [M+], 277 (55), 210 (20), 168 (26), 132 (90), 117 (58), 102 (15), 89 (100), 74 (20),
63 (78). HRMS: m/z [M+ + 2] calcd for C9H8Br2O: 291.8922; found: 291.8916.
1,1-Dibromo-2-(4-nitrophenyl)ethene (6): yield: 0.454 g, 74%; yellow crystals; mp 105-106 °C. 1H NMR (CDCl3): δ = 7.55 (s, 1 H, CH=), 7.68 (d, J = 8.8 Hz, 2 H, Ar), 8.24 (d, J = 8.8 Hz, 2 H, Ar). 13C NMR (CDCl3): δ = 94.3 (=CBr2), 123.3, 129.1, 134.8 (Ar), 138.5 (CH=), 141.4 (>CNO2). MS (EI): m/z (%rel. int.) = 307 (52) [M+], 286 (78), 249 (20), 220 (25), 180 (25), 139 (95), 101 (54), 89 (30), 75 (100),
63 (20), 50 (34). HRMS: m/z [M+ + 2] calcd for C8H5Br2NO2: 306.8667; found: 306.8654.
1,1-Dibromo-2-(4-acetylphenyl)ethene (7): yield: 0.547 g, 90%; yellowish crystals; mp 73-74 °C. 1H NMR (CDCl3): δ = 2.60 (3 H, Me), 7.68 (s, 1 H, CH=), 7.30 (d, J = 8.2 Hz, 2 H, Ar), 7.76 (d, J = 8.2 Hz, 2 H, Ar). 13C NMR (CDCl3): δ = 28.9 (Me), 91.8 (=CBr2), 128.0, 135.6, 147.7 (Ar), 148.9 (CH=), 153.3 (Ar), 196.3 (CO). MS (EI): m/z (%rel. int.) = 304 (25) [M+], 289 (100), 261 (20), 180 (25), 129 (15), 101 (30), 75 (30), 50 (20). HRMS: m/z [M+] calcd for C10H8Br2O: 303.9779; found: 303.9786.
1,1-Dibromo-2-(4-bromophenyl)ethene (8): yield: 0.531 g, 78%; colorless oil. 1H NMR (CDCl3): δ = 7.60 (d, J = 8.6 Hz, 2 H, Ar), 7.52 (s, 1 H, CH=), 7.71 (d, J = 8.6 Hz, 2 H, Ar). 13C NMR (CDCl3): δ = 90.2 (=CBr2), 122.6, 129.8, 132.4, 134.1 (Ar), 135.6 (CH=). MS (EI): m/z (%rel. int.) = 341 (100) [M+], 261 (45), 180 (60), 101 (46), 75 (48), 50 (40). HRMS: m/z [M+ + 2] calcd for C9H5Br3: 339.7921; found: 339.7930.
<A NAME="RG15407ST-15">15</A>
Synthesis of 1,4-Bis(2,2-dibromoethenyl)benzene (10): N-Bromosuccinimide (3.55 g, 20 mmol) was added to the solution of 1,4-bis[2,2-bis(trimethylsilyl)ethenyl]benzene
(0.418 g, 1 mmol) in anhyd MeCN (50 mL) and the suspension was stirred at r.t. for
24 h. The solvent was then evaporated and the mixture was extracted with n-hexane (50 mL). After extraction with aqueous solution of Na2S2O3 (5%, 50 mL) the organic layer was concentrated and the crude product was preloaded
onto silica. 1,4-Bis(2,2-di-bromoethenyl)benzene was purified by silica gel chromatog-raphy,
eluting with n-hexane-EtOAc (25:1) (0.397 g, 89%; white crystals; mp 108-109 °C). 1H NMR (CDCl3): δ = 7.39 (s, 2 H, CH=), 7.68 (s, 4 H, Ar). 13C NMR (CDCl3): δ = 90.4 (=CBr2), 128.4, 132.3 (Ar), 136.2 (CH=). MS (EI):
m/z (%rel. int.) = 446 (100) [M+], 365 (12), 286 (30), 206 (18), 126 (48), 63 (25). HRMS: m/z [M+] calcd for C10H6Br4: 445.7162; found: 445.7176.
<A NAME="RG15407ST-16">16</A>
Synthesis of 1,4-Bis[2,2-bis(trimethylsilyl)ethenyl] benzene (9): A mixture consisting of palladium(II) acetate (67.0 mg, 0.30 mmol), triphenylphosphine
(157.2 mg, 0.6 mmol), silver nitrate (1.70 g, 10 mmol), 1,4-diiodobenzene (5 mmol),
1,1-bis(trimethylsilyl)ethane (10 mmol, 1.72 g), triethylamine (2.80 mL, 20 mmol)
and acetonitrile (30 mL) was placed in a 50-mL, two-necked, round-bottomed flask equipped
with a magnetic stirring bar and reflux condenser. The suspension was heated in an
oil-bath at 80 °C for 2 h. After cooling to r.t., the reaction mixture was added to
H2O (50 mL) and extracted with pentane (2 × 30 mL). The combined organic layers were
dried (MgSO4) and the crude product obtained was then purified by column chromatog-raphy (silica
gel, pentane) to give the pure product (2.01 g, 96%) as white crystals. 1H NMR (CDCl3): δ = -0.01 (s, 18 H, SiMe), 0.18 (s, 18 H, SiMe), 7.12 (s, 4 H, Ar), 7.72 (s, 2
H, =CH). 13C NMR (CDCl3): δ = 0.5 (SiMe), 2.1 (SiMe), 127.4, 141.4 (Ar), 146.3 (CH=), 154.7 (>C=). MS (EI):
m/z (%rel. int.) = 418 (10) [M+], 345 (15), 257 (10), 171 (100), 131 (10), 73 (15). HRMS: m/z calcd for C22H42Si4: 418.2363; found: 418.2348.