Exp Clin Endocrinol Diabetes 2008; 116(1): 26-34
DOI: 10.1055/s-2007-985370
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Identification of CML-modified Proteins in Hemofiltrate of Diabetic Patients by Proteome Analysis

S. Schmitt 1 , M. Linder 1 , L. Ständker 3 , H.-P. Hammes 2 , K. T. Preissner 1
  • 1Department of Biochemistry, Justus-Liebig-University, Medical Faculty, Giessen, Germany
  • 25th Medical Clinic, University-Hospital Mannheim, Ruprecht-Karls-University, Medical Faculty, Heidelberg, Germany
  • 3Hannover Medical School, Center of Pharmacology, Hannover, Germany
Further Information

Publication History

received 06.06.2007 first decision 22.06.2007

accepted 17.07.2007

Publication Date:
09 October 2007 (online)

Abstract

The posttranslational modification of extra- and intracellular proteins by non-enzymatic glycation results in the formation of advanced glycation end products (AGEs) in physiological systems and is associated with the loss of protein structure and function. Modification by Nε-carboxymethyl lysine (CML) correlates with the risk for retinopathy in diabetes mellitus and has been discussed as a marker for the prediction of mortality in hemodialysis patients. AGEing of proteins is particularly increased under hyperglycemia associated with different late complications of diabetes mellitus. Modification of proteins to form AGE residues is significantly more enhanced in patients suffering from chronic renal disease than in hyperglycemia and is associated with increased risk for cardiovascular complications and inflammation in patients with chronic renal insuffiency. In order to identify and define the protein “substrates” for non-enzymatic glycation we used a proteome approach combining two-dimensional gel electrophoresis and immunoblotting with Edman protein sequencing to identify specific CML-modified proteins in human hemofiltrate, which essentially resembles plasma with respect to protein composition. Albumin, Ig kappa chain, prostaglandin D2 synthase, lysozyme C, plasma retinol binding protein and beta-2-microglobulin were identified as the major CML-modified proteins. CML-modified fragments of these proteins were also found in hemofiltrate. All identified proteins have in common that they appeared in hemofiltrate predominantly in their CML-modified form(s). Further studies of the functional roles of proteins identified by this new experimental approach could lead to the development of diagnostic tools to follow the progression of diabetes and contribute to the understanding of the pathogenesis of AGE-related diseases.

References

  • 1 Takeuchi M, Kikuchi S, Sasaki N, Suzuki T, Watai T, Iwaki M, Bucala R, Yamagishi S. Involvement of advanced glycation end-products (AGEs) in Alzheimer's disease.  Curr Alzheimer Res. 2004;  1 39-46
  • 2 Lapolla A, Fedele D, Reitano R, Arico NC, Seraglia R, Traldi P, Marotta E, Tonani R. Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides.  J Am Soc Mass Spectrom. 2004;  15 496-509
  • 3 Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease.  Nature. 1996;  382 685-691
  • 4 Miyata T, Wada Y, Cai Z, Iida Y, Horie K, Yasuda Y, Maeda K, Kurokawa K, Ypersele van de Strihou C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure.  Kidney Int. 1997;  51 1170-1181
  • 5 Brownlee M. Advanced protein glycosylation in diabetes and aging.  Annu Rev Med. 1995;  46 223-234
  • 6 Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs.  Cell Mol Biol. 1998;  44 1013-1023
  • 7 Thomas MC, Forbes JM, Cooper ME. Advanced glycation end products and diabetic nephropathy.  Am J Ther. 2005;  12 562-572
  • 8 Agalou S, Ahmed N, Babaei-Jadidi R, Dawnay A, Thornalley PJ. Profound mishandling of protein glycation degradation products in uremia and dialysis.  J Am Soc Nephrol. 2005;  16 1471-1485
  • 9 Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis.  Rheumatology (Oxford). 2003;  42 1242-1246
  • 10 Basta G, Schmidt AM, Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes.  Cardiovasc Res. 2004;  63 582-592
  • 11 Yagmur E, Tacke F, Weiss C, Lahme B, Manns MP, Kiefer P, Trautwein C, Gressner AM. Elevation of N epsilon-(carboxymethyl)lysine-modified advanced glycation end products in chronic liver disease is an indicator of liver cirrhosis.  Clin Biochem. 2006;  39 39-45
  • 12 Heijst JW van, Niessen HW, Hoekman K, Schalkwijk CG. Advanced glycation end products in human cancer tissues: detection of N epsilon-(carboxymethyl) lysine and argpyrimidine.  Ann N Y Acad Sci. 2005;  1043 725-733
  • 13 Massi-Benedetti M, Federici MO. Cardiovascular risk factors in type 2 diabetes: the role of hyperglycaemia.  Exp Clin Endocrinol Diabetes. 1999;  107 ((Suppl 4)) S120-123
  • 14 Bohlender JM, Franke S, Stein G, Wolf G. Advanced glycation end products and the kidney.  Am J Physiol Renal Physiol. 2005;  289 F645-659
  • 15 Schleicher ED, Bierhaus A, Haring HU, Nawroth PP, Lehmann R. Chemistry and pathobiology of advanced glycation end products.  Contrib Nephrol. 2001;  1-9
  • 16 Ahmed MU, Thorpe SR, Baynes JW. Identification of N epsilon-carboxymethyl lysine as a degradation product of fructoselysine in glycated protein.  J Biol Chem. 1986;  261 4889-4894
  • 17 Dunn JA, Ahmed MU, Murtiashaw MH, Richardson JM, Walla MD, Thorpe SR, Baynes JW. Reaction of ascorbate with lysine and protein under autoxidizing conditions: formation of N epsilon-(carboxymethyl)lysine by reaction between lysine and products of autoxidation of ascorbate.  Biochemistry. 1990;  29 10964-10970
  • 18 Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end product, N epsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions.  J Biol Chem. 1996;  271 9982-9986
  • 19 Peppa M, Vlassara H. Advanced glycation end products and diabetic complications: a general overview.  Hormones (Athens). 2005;  4 28-37
  • 20 Schalkwijk CG, Baidoshvili A, Stehouwer CD, Hinsbergh van VW, Niessen HW. Increased accumulation of the glycoxidation product N epsilon-(carboxymethyl)lysine in hearts of diabetic patients: generation and characterisation of a monoclonal anti-CML antibody.  Biochim Biophys Acta. 2004;  1636 82-89
  • 21 Takayama F, Aoyama I, Tsukushi S, Miyazaki T, Miyazaki S, Morita T, Hirasawa Y, Shimokata K, Niwa T. Immunohistochemical detection of imidazolone and N(epsilon)-(carboxymethyl)lysine in aortas of hemodialysis patients.  Cell Mol Biol (Noisy-le-grand). 1998;  44 1101-1109
  • 22 Stracke H, Hammes HP, Werkmann D, Mavrakis K, Bitsch I, Netzel M, Geyer J, Kopcke W, Sauerland C, Bretzel RG, Federlin KF. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats.  Exp Clin Endocrinol Diabetes. 2001;  109 330-336
  • 23 Meerwaldt R, Hartog JW, Graaff R, Huisman RJ, Links TP, den Hollander NC, Thorpe SR, Baynes JW, Navis G, Gans RO, Smit AJ. Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients.  J Am Soc Nephrol. 2005;  16 3687-3693
  • 24 Wagner Z, Molnar M, Molnar GA, Tamasko M, Laczy B, Wagner L, Csiky B, Heidland A, Nagy J, Wittmann I. Serum carboxymethyllysine predicts mortality in hemodialysis patients.  Am J Kidney Dis. 2006;  47 294-300
  • 25 Schwedler SB, Metzger T, Schinzel R, Wanner C. Advanced glycation end products and mortality in hemodialysis patients.  Kidney Int. 2002;  62 301-310
  • 26 Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes.  J Clin Invest. 1994;  94 110-117
  • 27 John H, Preissner KT, Forssmann WG, Ständker L. Novel glycosylated forms of human plasma endostatin and circulating endostatin-related fragments of collagen XV.  Biochemistry. 1999;  38 10217-10224
  • 28 Schulz-Knappe P, Schrader M, Standker L, Richter R, Hess R, Jurgens M, Forssmann WG. Peptide bank generated by large-scale preparation of circulating human peptides.  J Chromatogr A. 1997;  776 125-132
  • 29 Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction.  Biochemistry. 1996;  35 8075-8083
  • 30 Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging.  J Clin Invest. 1997;  99 457-468
  • 31 Koito W, Araki T, Horiuchi S, Nagai R. Conventional antibody against N epsilon-(carboxymethyl)lysine (CML) shows cross-reaction to N epsilon-(carboxyethyl)lysine (CEL): immunochemical quantification of CML with a specific antibody.  Journal of biochemistry. 2004;  136 831-837
  • 32 Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients.  Electrophoresis. 2000;  21 1037-1053
  • 33 Richter R, Schulz-Knappe P, Schrader M, Standker L, Jurgens M, Tammen H, Forssmann WG. Composition of the peptide fraction in human blood plasma: database of circulating human peptides.  J Chromatogr B Biomed Sci Appl. 1999;  726 25-35
  • 34 Schepky AG, Bensch KW, Schulz-Knappe P, Forssmann WG. Human hemofiltrate as a source of circulating bioactive peptides: determination of amino acids, peptides and proteins.  Biomed Chromatogr. 1994;  8 90-94
  • 35 Vanholder R, Smet R De, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, Deyn PP De, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W. Review on uremic toxins: classification, concentration, and interindividual variability.  Kidney Int. 2003;  63 1934-1943
  • 36 Agalou S, Ahmed N, Thornalley PJ, Dawnay A. Removal of Free Advanced Glycation End Products by Hemodialysis.  Ann N Y Acad Sci. 2005;  1043 922
  • 37 Miyata T, Izuhara Y, Sakai H, Kurokawa K. Carbonyl stress: increased carbonyl modification of tissue and cellular proteins in uremia.  Perit Dial Int. 1999;  19 ((Suppl 2)) S58-61
  • 38 Zhang X, Frischmann M, Kientsch-Engel R, Steinmann K, Stopper H, Niwa T, Pischetsrieder M. Two immunochemical assays to measure advanced glycation end-products in serum from dialysis patients.  Clin Chem Lab Med. 2005;  43 503-511
  • 39 Gerdemann A, Wagner Z, Solf A, Bahner U, Heidland A, Vienken J, Schinzel R. Plasma levels of advanced glycation end products during haemodialysis, haemodiafiltration and haemofiltration: potential importance of dialysate quality.  Nephrol Dial Transplant. 2002;  17 1045-1049
  • 40 Doublier S, Salvidio G, Lupia E, Ruotsalainen V, Verzola D, Deferrari G, Camussi G. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II.  Diabetes. 2003;  52 1023-1030
  • 41 Williams SK, Devenny JJ, Bitensky MW. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy.  Proc Natl Acad Sci USA. 1981;  78 2393-2397
  • 42 Lapolla A, Fedele D, Reitano R, Bonfante L, Pastori G, Seraglia R, Tubaro M, Traldi P. Advanced glycation end products/peptides: an in vivo investigation.  Ann N Y Acad Sci. 2005;  1043 267-275
  • 43 Cohen MP, Chen S, Ziyadeh FN, Shea E, Hud EA, Lautenslager GT, Shearman CW. Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy.  Kidney Int. 2005;  68 1554-1561
  • 44 Mera K, Anraku M, Kitamura K, Nakajou K, Maruyama T, Tomita K, Otagiri M. Oxidation and carboxy methyl lysine-modification of albumin: possible involvement in the progression of oxidative stress in hemodialysis patients.  Hypertens Res. 2005;  28 973-980
  • 45 Dolhofer-Bliesener R, Gerbitz KD. Impairment by glycation of immunoglobulin G Fc fragment function.  Scand J Clin Lab Invest. 1990;  50 739-746
  • 46 Davin JC, Bouts AH, Krediet RT, Weel van der M, Weening RS, Groothoff J, Out TA. IgG glycation and function during continuous ambulatory peritoneal dialysis.  Nephrol Dial Transplant. 1997;  12 310-314
  • 47 Menini T, Gugliucci A, Stahl AJC. Polyclonal immunoglobulin M: location of glycation sites.  Clin Chim Acta. 1992;  213 23-25
  • 48 Lapolla A, Fedele D, Aronica R, Garbeglio M, D'Alpaos M, Seraglia R, Traldi P. Evaluation of IgG glycation levels by matrix-assisted laser desorption/ionization mass spectrometry.  Rapid Commun Mass Spectrom. 1997;  11 1342-1346
  • 49 Ligier S, Fortin PR, Newkirk MM. A new antibody in rheumatoid arthritis targeting glycated IgG: IgM anti-IgG-AGE.  Br J Rheumatol. 1998;  37 1307-1314
  • 50 Vrdoljak A, Trescec A, Benko B, Hecimovic D, Simic M. In vitro glycation of human immunoglobulin G.  Clin Chim Acta. 2004;  345 105-111
  • 51 Hou FF, Owen Jr WF. Beta 2-microglobulin amyloidosis: role of monocytes/macrophages.  Curr Opin Nephrol Hypertens. 2002;  11 417-421
  • 52 Kopec J. Carbonyl stress significance in the pathogenesis of dialysis-related amyloidosis.  Przegl Lek. 2003;  60 435-437
  • 53 Aksun SA, Ozmen D, Ozmen B, Parildar Z, Mutaf I, Turgan N, Habif S, Kumanliogluc K, Bayindir O. Beta2-microglobulin and cystatin C in type 2 diabetes: assessment of diabetic nephropathy.  Exp Clin Endocrinol Diabetes. 2004;  112 195-200
  • 54 Kato A, Nakamura S, Takasaki H, Maki S. Novel functional properities of glycosylated ysozyme constructed by chemical and genetic modifications. In: Parris N, Kato A, Creamer L, Pearce J eds, Macromolecular Interactions in Food Technology. ACS Symposium Series 650 ed. Washington, D.C.: American Chemical Society 1996: 242-256
  • 55 Yeboah FK, Alli I, Yaylayan VA, Yasuo K, Chowdhury SF, Purisima EO. Effect of limited solid-state glycation on the conformation of lysozyme by ESI-MSMS peptide mapping and molecular modeling.  Bioconjug Chem. 2004;  15 27-34
  • 56 Li YM. Glycation ligand binding motif in lactoferrin. Implications in diabetic infection.  Adv Exp Med Biol. 1998;  443 57-63
  • 57 Zheng F, Cai W, Mitsuhashi T, Vlassara H. Lysozyme enhances renal excretion of advanced glycation endproducts in vivo and suppresses adverse age-mediated cellular effects in vitro: a potential AGE sequestration therapy for diabetic nephropathy?.  Mol Med. 2001;  7 737-747
  • 58 Shoda H, Miyata S, Liu BF, Yamada H, Ohara T, Suzuki K, Oimomi M, Kasuga M. Inhibitory effects of tenilsetam on the Maillard reaction.  Endocrinology. 1997;  138 1886-1892
  • 59 Sensi M, Bruno MR, Valente L, Cioccia GP, Chianelli M, Pozzilli P. Retinol binding protein: a short half life determinant of protein non enzymatic glycation in diabetes.  Diabetes Res. 1990;  13 195-198
  • 60 Zanotti G, Berni R. Plasma retinol-binding protein: structure and interactions with retinol, retinoids, and transthyretin.  Vitam Horm. 2004;  69 271-295
  • 61 Hirawa N, Uehara Y, Ikeda T, Gomi T, Hamano K, Totsuka Y, Yamakado M, Takagi M, Eguchi N, Oda H, Seiki K, Nakajima H, Urade Y. Urinary prostaglandin D synthase (beta-trace) excretion increases in the early stage of diabetes mellitus.  Nephron. 2001;  87 321-327
  • 62 Poge U, Gerhardt TM, Stoffel-Wagner B, Palmedo H, Klehr HU, Sauerbruch T, Woitas RP. Beta-Trace protein is an alternative marker for glomerular filtration rate in renal transplantation patients.  Clin Chem. 2005;  51 1531-1533
  • 63 Hamano K, Totsuka Y, Ajima M, Gomi T, Ikeda T, Hirawa N, Eguchi Y, Yamakado M, Takagi M, Nakajima H, Oda H, Seiki K, Eguchi N, Urade Y, Uehara Y. Blood sugar control reverses the increase in urinary excretion of prostaglandin D synthase in diabetic patients.  Nephron. 2002;  92 77-85
  • 64 Ragolia L, Palaia T, Hall CE, Maesaka JK, Eguchi N, Urade Y. Acceler-ated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice.  J Biol Chem. 2005;  280 29946-29955
  • 65 Kanaoka Y, Urade Y. Hematopoietic prostaglandin D synthase.  Prostaglandins Leukot Essent Fatty Acids. 2003;  69 163-167
  • 66 Hartog JW, Vries AP de, Lutgers HL, Meerwaldt R, Huisman RM, Son WJ van, Jong PE de, Smit AJ. Accumulation of advanced glycation end products, measured as skin autofluorescence, in renal disease.  Ann N Y Acad Sci. 2005;  1043 299-307
  • 67 Monnier VM, Sell DR, Genuth S. Glycation products as markers and predictors of the progression of diabetic complications.  Ann N Y Acad Sci. 2005;  1043 567-581

Correspondence

K.T. PreissnerPhD 

Department of Biochemistry

Justus-Liebig-University

Medical Faculty

Friedrichstrasse 24

35392 Giessen

Germany

Phone: +49/641/99 47 50 0

Fax: +49/641/99 47 50 9

Email: Klaus.T.Preissner@biochemie.med.uni-giessen.de

    >