References and Notes
<A NAME="RD14807ST-1">1</A>
Kobayashi J.
Morita H.
The Alkaloids
2003,
60:
165
<A NAME="RD14807ST-2">2</A>
Morita H.
Fujiwara M.
Yoshida N.
Kobayashi J.
Tetrahedron
2000,
56:
5801
<A NAME="RD14807ST-3">3</A>
Solé D.
Urbaneja X.
Bonjoch J.
Org. Lett.
2005,
7:
5461
<A NAME="RD14807ST-4">4</A>
Zhang H.
Yang S.-P.
Fan C.-Q.
Ding J.
Yue J.-M.
J. Nat. Prod.
2006,
69:
533
<A NAME="RD14807ST-5">5</A>
Morita H.
Kobayashi J.
Org. Lett.
2003,
5:
2895
<A NAME="RD14807ST-6A">6a</A>
Saito S.
Kubota T.
Fukushi E.
Kawabata J.
Zhang H.
Kobayashi J.
Tetrahedron Lett.
2007,
48:
1587
<A NAME="RD14807ST-6B">6b</A>
Li C.
He H.
Wang Y.
Mu S.
Li S.
Gao Z.
Gao Z.
Hao X.
Tetrahedron Lett.
2007,
48:
2737 ; and references therein
<A NAME="RD14807ST-7">7</A> By Zr-promoted reductive cyclization:
Mori M.
Uesaka N.
Saitoh F.
Shibasaki M.
J. Org. Chem.
1994,
59:
5643
<A NAME="RD14807ST-8">8</A> By intramolecular reaction of enol ethers with alkynes catalyzed by Pt(II):
Nevado C.
Cárdenas DJ.
Echavarren AM.
Chem. Eur. J.
2003,
9:
2627
<A NAME="RD14807ST-9">9</A> By W(CO)5(L)-catalyzed cyclization of ω-acetylenic silyl enol ethers:
Grandmarre A.
Kusama H.
Iwasawa N.
Chem. Lett.
2007,
36:
66
For the synthesis of 3a-unsubstituted cis-3-methylene-hydoindoles, see:
<A NAME="RD14807ST-10A">10a</A>
Solé D.
Cancho Y.
Llebaría A.
Moretó JM.
Delgado A.
J. Org. Chem.
1996,
61:
5895
<A NAME="RD14807ST-10B">10b</A>
Lemaire-Audoire S.
Savignac M.
Dupuis C.
Genêt J.-P.
Tetrahedron Lett.
1996,
37:
2003
<A NAME="RD14807ST-10C">10c</A>
Berteina S.
De Mesmaeker A.
Wendeborn S.
Synlett
1999,
1121
<A NAME="RD14807ST-10D">10d</A>
Gordon GJ.
Luker T.
Tuckett MW.
Whitby RJ.
Tetrahedron
2000,
56:
2113
<A NAME="RD14807ST-11">11</A>
Carcache DA.
Cho YS.
Hua Z.
Tian Y.
Li Y.-M.
Danishefsky SJ.
J. Am. Chem. Soc.
2006,
128:
1016
For the enantioselective synthesis of 1, see:
<A NAME="RD14807ST-12A">12a</A>
Behenna DC.
Stoltz BM.
J. Am. Chem. Soc.
2004,
126:
15044
<A NAME="RD14807ST-12B">12b</A>
Mohr JT.
Behenna DC.
Harned AM.
Stoltz BM.
Angew. Chem. Int. Ed.
2005,
44:
6924
<A NAME="RD14807ST-13">13</A>
Hon Y.-S.
Chang F.-J.
Liu L.
Lin W.-C.
Tetrahedron
1998,
54:
5233
<A NAME="RD14807ST-14">14</A>
This was higher than the 30% yield obtained when the intermediate aldehyde was submitted
to methylenation with the Eschenmoser reagent.
<A NAME="RD14807ST-15">15</A>
2-[(1-Methylene)formylmethyl]-2-methylcyclohexane-1,4-dione Monoethylene Acetal (2)
A stirred solution of ketone 1 (1.1 g, 5.23 mmol) in CH2Cl2 (105 mL) at -78 °C was treated with a constant stream of ozone. When the solution
turned a characteristic pale blue, it was purged with oxygen. To this solution (at
-78 °C) was added a mixture of CH2Br2 (1.84 mL, 4.54 g, 26.15 mmol) and Et2NH (8.15 mL, 5.74 g, 78.47 mmol; preheated to 55 °C for 1.5 h and then cooled to
r.t.) and the resulting yellow solution was stirred at r.t. for 2.5 h. The reaction
mixture was concentrated, Et2O was added (most of the ammonium salts precipitated), and the mixture was filtered
and washed with Et2O. The residue was purified by flash column chromatography (silica gel, hexane-EtOAc,
2:1 to 1:1) to give aldehyde 2 (42% yield) as a colorless oil: 1H NMR (300 MHz, CDCl3): δ = 1.44 (s, 3 H, CH3), 1.62 (dd, J = 13.9, 2.9 Hz, 1 H, H-3), 2.00 (dm, J = 12.8 Hz, 1 H, H-5eq), 2.32 (td, 1 H, J = 12.8, 5.1 Hz, H-5ax), 2.42 (d, J = 13.9 Hz, 1 H, H-3), 2.59 (dt, J = 16.5, 4.8 Hz, 1 H, H-6eq), 2.75 (ddd, J = 16.6, 12.4, 5.7 Hz, 1 H, H-6ax), 4.05-3.91 (m, 4 H, OCH2), 6.16 (s, 1 H, =CH), 6.35 (s, 1 H, =CH), 9.46 (s, 1 H, CHO). 13C NMR (75 MHz, CDCl3): δ = 23.5 (Me), 32.8 (C-5), 35.9 (C-6), 43.7 (C-3), 49.5 (C-2), 64.2 and 64.6 (OCH2), 107.4 (C-4), 134.8 (=CH2), 140.3 (=C), 193.3 (CHO), 211.1 (C-1). IR (NaCl, neat): 2969, 2888, 1711, 1688,
1282, 1114, 1072, 1036 cm-1.
<A NAME="RD14807ST-16">16</A>
cis
-1-Benzyl-3a-methyl-3-methyleneoctahydroindol-5-one Ethylene Acetal (3)
To a solution of aldehyde 2 (0.4 g, 1.78 mmol) in MeOH (9 mL) were added first benzylamine hydrochloride (1.13
g, 7.85 mmol) and then NaBH3CN (0.09 g, 1.43 mmol). After stirring for 30 min, an additional portion of NaBH3CN (0.09 g, 1.43 mmol) was added and stirring was continued for 1 h. A third portion
of NaBH3CN (0.25 g, 3.92 mmol) was then added, and stirring was continued overnight. After
removing the MeOH, CH2Cl2 was added and the resulting organic solution was washed with sat. aq NaHCO3 solution, dried and concentrated. The resulting mixture was purified by column chromatography
(silica gel, hexane-EtOAc, 4:1 to 2:1) to give amine 3 (60% yield) as a yellow oil: 1H NMR (300 MHz, CDCl3, gCOSY): δ = 1.21 (s, 3 H, H-9), 1.35 (dd, J = 13.7, 2.5 Hz, 1 H, H-4), 1.46 (ddd, J = 12.5, 6.0, 2.9 Hz, 1 H, H-7), 1.77-2.10 (m, 4 H, H-4, H-6, and H-7), 2.23 (t, J = 2.7 Hz, 1 H, H-7a), 2.79 (dt, J = 13.7, 2.5 Hz, 1 H, H-2), 3.02 (d, J = 13.2 Hz, 1 H, CH2Ph), 3.64 (dt, J = 14.5, 1.8 Hz, 1 H, H-2), 3.88-4.01 (m, 4 H, OCH2), 4.10 (d, J = 13.2 Hz, 1 H, CH2Ph), 4.66 (t, J = 2.1 Hz, 1 H, =CH), 4.69 (t, J = 2.6 Hz, 1 H, =CH), 7.21-7.35 (m, 5 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 21.4 (C-7), 21.8 (CH3), 28.6 (C-6), 42.3 (C-4), 45.5 (C-3a), 57.5 (NCH2Ar), 57.9 (C-2), 63.6 and 64.3 (OCH2), 67.8 (C-7a), 101.5 (=CH2), 102.1 (C-5), 123.7 (ArH), 128.3 (ArH), 128.4 (ArH), 139.7 (Ar), 157.4 (C-3).
<A NAME="RD14807ST-17">17</A> For the isolation of the 5-desoxo derivative, see:
Mori M.
Saitoh F.
Uesaka N.
Okamura K.
Date T.
J. Org. Chem.
1994,
59:
4993
<A NAME="RD14807ST-18">18</A>
(3
RS
,3a
RS
,7a
RS
)-1-Benzyl-3-hydroxymethyl-3a-methyloctahydroindol-5-one Ethylene Acetal (4)
To a solution of 3 (0.9 g, 3.0 mmol) in anhyd THF (30 mL) at r.t. was added dropwise BH3·THF complex (15 mL, 15.0 mmol; 1 M solution in THF). When the starting material was
completely consumed, the reaction was cooled to 0 °C and 3 N NaOH (6 mL) and H2O2 (3 mL of an 30% aq solution) were carefully added to the solution. After stirring
for an hour, brine was added to the reaction and extracted with EtOAc. The organic
layers were dried, filtered, and concentrated. The residue was purified by column
chromatography (SiO2, CH2Cl2-EtOAc, 98:2 to 95:5) to afford alcohol 4 (705 mg, 76%) as a yellow oil: 1H NMR (300 MHz, CDCl3, gCOSY): δ = 1.21 (s, 3 H, CH3), 1.28 (dd, J = 13.1, 2.2 Hz, 1 H, H-4), 1.45 (ddd, J = 12.4, 5.9, 3.2 Hz, 1 H, H-7), 1.87-1.76 (m, 2 H, H-4 and H-6), 1.91-2.11 (m, 2
H, H-6 and H-7), 2.38 (t, J = 2.6 Hz, 1 H, H-7a), 2.52 (t, J = 10.1 Hz, 1 H, H-2), 2.74 (dd, J = 10.1, 8.2 Hz, 1 H, H-2), 3.19 (d, J = 13.4 Hz, 1 H, CH2Ph), 3.47 (dd, J = 10.4, 8.4 Hz, 1 H, CH2OH), 3.69 (dd, J = 10.4, 5.9 Hz, 1 H, CH2OH), 3.87-3.99 (m, 4 H, OCH2), 4.02 (d, J = 13.5 Hz, 1 H, CH2Ph), 7.20-7.32 (m, 5 H, ArH). 13C NMR (300 MHz, CDCl3, gHSQC): δ = 21.5 (C-6), 21.9 (Me), 28.6 (C-7), 36.5 (C-4), 43.0 (C-3a), 51.0 (C-3),
55.1 (C-2), 57.9 (NCH2Ar), 62.6 (CH2OH), 63.5 and 64.4 (OCH2), 68.5 (C-7a), 109.6 (C-5), 126.6 (ArH), 128.1 (ArH), 128.3 (ArH), 140.2 (Ar). IR
(NaCl, neat): 3440, 2926, 2877, 2788, 1359, 1091 cm-1.
<A NAME="RD14807ST-19">19</A>
trans
-1-Benzyl-3a-hydroxymethyl-3-methylene-octahydroindol-5-one Ethylene Acetal (8)
1H NMR (300 MHz, CDCl3, NOESY): δ = 1.57-1.60 (m, 2 H, H-4 and H-7), 1.74-1.89 (m, 2 H, H-4 and H-6), 1.89-2.01
(m, 2 H, H-6 and H-7), 2.40 (dd, J = 11.9, 3.4 Hz, 1 H, H-7a), 2.82 (td, J = 14.4, 2.4 Hz, 1 H, H-2), 3.12 (d, J = 12.9 Hz, 1 H, NCH2Ar), 3.44 (d, J = 11.0 Hz, 1 H, CH2OH), 3.69 (d, J = 14.4 Hz, 1 H, H-2), 3.86-4.00 (m, 4 H, OCH2), 4.04 (d, J = 13 Hz, 1 H, NCH2Ar), 4.40 (d, J = 11.0 Hz, 1 H, CH2OH), 4.80 (t, J = 2.5 Hz, 1 H, =CH2), 4.88 (t, J = 2.0 Hz, 1 H, =CH2), 7.26-7.30 (m, 5 H, ArH). 13C NMR (75 MHz, CDCl3, gHSQC): δ = 21.1 (C-7), 34.5 (C-6), 40.3 (C-4), 49.5 (C-3a), 58.0 (CH2Ph), 59.9 (C-2), 63.9 and 64.7 (OCH2), 66.3 (CH2OH), 72.3 (C-7a), 103.7 (=CH2), 109.0 (C-5), 127.1 (ArH), 128.3 (ArH), 128.5 (ArH), 138.0 (Ar), 152,1 (C-3). IR
(NaCl, neat): 3410, 3300, 2947, 2881, 2804, 1452, 1359, 1252, 1206, 1142, 1110, 1059,
1011 cm-1.
<A NAME="RD14807ST-20">20</A>
trans
-1-Benzyl-3a-methyl-3-methyleneoctahydroindol-5-one Ethylene Acetal (10)
1H NMR (300 MHz, CDCl3, gCOSY): δ = 1.18 (s, 3 H, CH3), 1.56-1.62 (m, 3 H, H-4 and H-7), 1.72-1.75 (m, 1 H, H-7), 1.91-1.96 (m, 2 H, H-6),
1.97 (dd, J = 13.2, 2.4 Hz, 1 H, H-7), 2.04-2.12 (m, 1 H, H-7a), 2.73 (dt, J = 14.8, 2.1 Hz, 1 H, H-2), 3.18 (d, J = 13.5 Hz, 1 H, CH2Ph), 3.70 (dt, J = 15.2, 1.9 Hz 1 H, H-2), 3.86-4.07 (m, 5 H, OCH2 and CH2Ph), 4.58 (t, J = 2.3 Hz 1 H, =CH2), 7.22-7.37 (m, 5 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 20.3 (CH3), 21.5 (C-7), 34.6 (C-6), 42.6 (C-4), 45.4 (C-3a), 58.1 (NCH2Ar), 58.6 (C-2), 63.6 and 63.6 (OCH2), 71.8 (C-7a), 100.0 (=CH2), 109.8 (C-5), 126.7 (ArH), 128.1 (ArH), 128.3 (ArH), 139.8 (Ar), 156.7 (C-3).
<A NAME="RD14807ST-21">21</A> For the influence of the substituent at C-3a in the reduction of N-Boc-hexahydro-1H-indoles, see:
Brodney MA.
Cole ML.
Freemont JA.
Kyi S.
Junk PC.
Padwa A.
Riches AG.
Ryan JH.
Tetrahedron Lett.
2007,
48:
1939
<A NAME="RD14807ST-22">22</A>
Both precursors 2 and 6 seem to have the same preferred conformation, according to their NMR data. For methyl
derivative 2, see ref. 15. For 6: 1H NMR (300 MHz, CDCl3): δ = 2.00 (ddd, J = 13.1, 6.5, 3.3 Hz, 1 H, H-5), 2.26 (dt, J = 13.5, 5.2 Hz, 1 H, H-5), 2.51 (d, J = 13.0 Hz, 1 H, H-3), 2.56 (d, J = 13.7 Hz, 1 H, H-3), 2.63 (ddd, J = 15.9, 5.2, 3.0 Hz, 1 H, H-6), 3.04 (ddd, J = 15.9, 13.7, 6.5 Hz, 1 H, H-6), 3.79 (s, 3 H, OMe), 3.91-4.04 (m, 4 H, OCH2), 6.23 and 6.28 (2 s, 1 H each, =CH2), 9.47 (s, 1 H, CHO). 13C NMR (75 MHz, CDCl3): δ = 33.9 (C-5), 37.6 (C-6), 39.7 (C-3), 53.0 (OMe), 61.4 (C-2), 64.3 and 64.8 (OCH2), 106.4 (C-4), 135.9 (=CH2), 147.5 (=C), 170.4 (CO2Me), 192.0 (CHO), 203.1 (C-1). IR (NaCl, neat): 2956, 2894, 1740, 1710, 1695, 1434,
1279, 12361121, 1089, 1040 cm-1.
<A NAME="RD14807ST-23A">23a</A>
Ayala L.
Lucero CG.
Romero JAC.
Tabacco SA.
Woerpel KA.
J. Am. Chem. Soc.
2003,
125:
15521
<A NAME="RD14807ST-23B">23b</A>
Smith DM.
Woerpel KA.
Org. Lett.
2004,
6:
2063
<A NAME="RD14807ST-23C">23c</A>
Smith DM.
Woerpel KA.
Org. Biomol. Chem.
2006,
4:
1195