Abstract
A variety of olefin-metathesis protocols have been used to prepare spirocyclic compounds,
cyclic sulfones, and constrained α-amino acid derivatives. Conceptually, a new approach
to a novel cyclophane ring system has been realized via ring-closing metathesis (RCM).
Also, tetracyclic compounds related to anthracycline antibiotics have been assembled
using Claisen rearrangement and RCM as key steps. Further, a sequential use of the
Diels-Alder reaction and ring-opening cross-metathesis delivered highly functionalized
spiroindane derivatives, and trisubstituted benzene derivatives have been assembled
using Grubbs’ catalyst. Finally, the enyne and cross-enyne metathesis sequences have
been used to prepare several constrained α-amino acid derivatives.
1 Introduction
2 Application of Ring-Closing Metathesis To Give Spirocyclic Compounds
3 Application of Ring-Closing Metathesis To Give Cyclophane Derivatives
4 Application of Ring-Closing Metathesis To Give Cyclic Sulfone Derivatives
5 Application of Ring-Closing Metathesis To Give Cyclic α-Amino Acid Derivatives and Modified Peptides
6 Application of Ring-Closing Metathesis to Benzannulation
7 Application of Enyne Metathesis to the Synthesis of Constrained α-Amino Acid and
Naphthoxepin Derivatives
8 Application of Cross-Enyne Metathesis to the Synthesis of Highly Functionalized
Phenylalanine Derivatives
9 Application of Ring-Opening Cross-Metathesis to Spiroindanes
10 Synthesis of Trisubstituted Benzene Derivatives Using Grubbs’ Catalyst
11 Metathesis of a Novel Enyne System
12 Macroheterocycles via Cross-Enyne and Ring-Closing Metathesis Cascade Reactions
13 Conclusions
Key words
amino acids - polycycles - metathesis - heterocycles - spiro compounds
References
For general references on metathesis, see:
<A NAME="RA46707ST-1A">1a </A>
Advanced Synthesis & Catalysis, Olefin Metathesis
Vol. 349:
Grubbs RH.
Schrock RR.
Fürstner A.
Wiley-VCH;
Weinheim:
2007.
p.1-265
<A NAME="RA46707ST-1B">1b </A>
Astruc D.
New J. Chem.
2006,
30:
1848
<A NAME="RA46707ST-1C">1c </A>
Katz TJ.
New J. Chem.
2006,
30:
1844
<A NAME="RA46707ST-1D">1d </A>
Chauvin Y.
Angew. Chem. Int. Ed.
2006,
45:
3741
<A NAME="RA46707ST-1E">1e </A>
Schrock RR.
Angew. Chem. Int. Ed.
2006,
45:
3748
<A NAME="RA46707ST-1F">1f </A>
Grubbs RH.
Angew. Chem. Int. Ed.
2006,
45:
3760
<A NAME="RA46707ST-1G">1g </A>
Kotha S.
Panjab Univ. Res. J. (Sci.)
2006,
56:
223
<A NAME="RA46707ST-1H">1h </A>
Astruc D.
New J. Chem.
2005,
29:
42
<A NAME="RA46707ST-1I">1i </A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
<A NAME="RA46707ST-1J">1j </A>
Grubbs RH.
Tetrahedron
2004,
60:
7117
<A NAME="RA46707ST-1K">1k </A>
Mori M.
J. Mol. Catal.
2004,
213:
73
<A NAME="RA46707ST-1L">1l </A>
Handbook of Metathesis
Vol. 1-3:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
<A NAME="RA46707ST-1M">1m </A>
Kotha S.
Sreenivasachary N.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2001,
40:
763
<A NAME="RA46707ST-1N">1n </A>
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
For selected examples of enyne metathesis, see:
<A NAME="RA46707ST-2A">2a </A>
Hansen EC.
Lee D.
Acc. Chem. Res.
2006,
39:
509
<A NAME="RA46707ST-2B">2b </A>
Maifeld SV.
Lee D.
Chem. Eur. J.
2005,
11:
6118
<A NAME="RA46707ST-2C">2c </A>
Diver ST.
Giessert AJ.
Chem. Rev.
2004,
104:
1317
<A NAME="RA46707ST-2D">2d </A>
Poulsen CS.
Madsen R.
Synthesis
2003,
1
<A NAME="RA46707ST-2E">2e </A>
Sémeril D.
Bruneau C.
Dixneuf PH.
Adv. Synth. Catal.
2002,
344:
585
<A NAME="RA46707ST-2F">2f </A>
Mori M.
Top. Organomet. Chem.
1998,
1:
133
For selected examples of acyclic diene metathesis polymerization (ADMP), see:
<A NAME="RA46707ST-3A">3a </A>
Schwendeman JE.
Church AC.
Wagener KB.
Adv. Synth. Catal.
2002,
344:
597
<A NAME="RA46707ST-3B">3b </A>
Buchmeiser MR.
Chem. Rev.
2000,
100:
1565
For selected examples of catalyst development, see:
<A NAME="RA46707ST-4A">4a </A>
Dragutan V.
Dragutan I.
Demonceau A.
Platinum Met. Rev.
2005,
49:
183
<A NAME="RA46707ST-4B">4b </A>
Dragutan V.
Dragutan I.
Verpoort F.
Platinum Met. Rev.
2005,
49:
33
<A NAME="RA46707ST-4C">4c </A>
Dragutan V.
Dragutan I.
Platinum Met. Rev.
2004,
48:
148
<A NAME="RA46707ST-4D">4d </A>
Schrock RR.
J. Mol. Catal. A: Chem.
2004,
213:
21
<A NAME="RA46707ST-4E">4e </A>
Casterlenas R.
Fischmeister C.
Bruneau C.
Dixneuf PH.
J. Mol. Catal. A: Chem.
2004,
213:
31
<A NAME="RA46707ST-4F">4f </A>
Schrock RR.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4592
<A NAME="RA46707ST-4G">4g </A>
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
<A NAME="RA46707ST-4H">4h </A>
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
For selected examples of the synthesis of heterocycles via metathesis, see:
<A NAME="RA46707ST-5A">5a </A>
Chattopadhyay SK.
Karmakar S.
Biswas T.
Majumdar KC.
Rahman H.
Roy B.
Tetrahedron
2007,
63:
3919
<A NAME="RA46707ST-5B">5b </A>
Brown RCD.
Satcharoen V.
Heterocycles
2006,
70:
705
<A NAME="RA46707ST-5C">5c </A>
McReynolds MD.
Dougherty JM.
Hanson PR.
Chem. Rev.
2004,
104:
2239
For selected references on using a metathesis protocol towards the synthesis of amino
acids:
<A NAME="RA46707ST-6A">6a </A>
See also ref. 1f
<A NAME="RA46707ST-6B">6b </A>
Kaiser J.
Kinderman SS.
van Esseveldt BCJ.
van Delft FL.
Schoemaker HE.
Blaauw RH.
Rutjes FPJT.
Org. Biomol. Chem.
2005,
3:
3435
<A NAME="RA46707ST-6C">6c </A>
Osipov SN.
Dixneuf P.
Russ. J. Org. Chem.
2003,
39:
1211
<A NAME="RA46707ST-6D">6d </A>
Phillips AJ.
Abell AD.
Aldrichimica Acta
1999,
32:
75
<A NAME="RA46707ST-7A">7a </A>
Nosse B.
Schall A.
Jeong WB.
Reiser O.
Adv. Synth. Catal.
2005,
347:
1869
<A NAME="RA46707ST-7B">7b </A>
Li JJ.
Name Reactions in Heterocyclic Chemistry
John Wiley & Sons;
Hoboken NJ:
2005.
<A NAME="RA46707ST-7C">7c </A>
Sannigrahi M.
Tetrahedron
1999,
55:
9007
<A NAME="RA46707ST-7D">7d </A>
Williams RM.
Synthesis of Optically Active α-Amino Acids
Pergamon;
New York:
1989.
<A NAME="RA46707ST-8">8 </A>
Kotha S.
Manivannan E.
Sreenivasachary N.
Ganesh T.
Deb A.
Synlett
1999,
1618
<A NAME="RA46707ST-9A">9a </A>
Kotha S.
Manivannan E.
ARKIVOC
2003,
(iii):
67
<A NAME="RA46707ST-9B">9b </A>
Bassindale MJ.
Edwards AS.
Hamley P.
Adams H.
Harrity JPA.
Chem. Commun.
2000,
1035
<A NAME="RA46707ST-10">10 </A>
Kotha S.
Deb A.
Vinodkumar R.
Bioorg. Med. Chem. Lett.
2005,
15:
1039
<A NAME="RA46707ST-11A">11a </A>
Westhorpe RN.
Ball C.
Int. Congr. Ser.
2002,
1242:
57
<A NAME="RA46707ST-11B">11b </A>
Schobert R.
Urbina-González JM.
Tetrahedron Lett.
2005,
46:
3657
<A NAME="RA46707ST-11C">11c </A>
Srikrishna A.
Rao MS.
Gharpure SJ.
Babu NC.
Synlett
2001,
1986
<A NAME="RA46707ST-11D">11d </A>
Sabitha G.
Reddy ChS.
Babu RS.
Yadav JS.
Synlett
2001,
1787
<A NAME="RA46707ST-11E">11e </A>
Gurjar MK.
Ravindranadh SV.
Karmakar S.
Chem. Commun.
2001,
241
<A NAME="RA46707ST-12A">12a </A>
Kotha S.
Mandal K.
Tetrahedron Lett.
2004,
45:
1391
<A NAME="RA46707ST-12B">12b </A>
Green J.
McHale D.
Chem. Ind. (London)
1964,
1801
For related examples of Grubbs’ catalyst induced isomerization, see:
<A NAME="RA46707ST-12C">12c </A>
Hong SH.
Day MW.
Grubbs RH.
J. Am. Chem. Soc.
2004,
126:
7414
<A NAME="RA46707ST-12D">12d </A>
Schmidt B.
Synlett
2004,
1541
<A NAME="RA46707ST-12E">12e </A>
Schmidt B.
Eur. J. Org. Chem.
2003,
816
<A NAME="RA46707ST-12F">12f </A>
van Otterlo WAL.
Ngidi EL.
de Koning CB.
Tetrahedron Lett.
2003,
44:
6483
<A NAME="RA46707ST-12G">12g </A>
Alcaide B.
Almendros P.
Chem. Eur. J.
2003,
9:
1258
<A NAME="RA46707ST-12H">12h </A>
Braddock DC.
Matsuno A.
Tetrahedron Lett.
2002,
43:
3305
<A NAME="RA46707ST-12I">12i </A>
Sutton AE.
Benjamin A.
Seigal AD.
Finnegan F.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
<A NAME="RA46707ST-12J">12j </A>
Arisawa M.
Terada Y.
Nakagawa M.
Nishida A.
Angew. Chem. Int. Ed.
2002,
41:
4732
<A NAME="RA46707ST-12K">12k </A>
Cadot C.
Dalko PI.
Cossy J.
Tetrahedron Lett.
2002,
43:
1839
<A NAME="RA46707ST-12L">12l </A>
Braddock DC.
Wildsmith AJ.
Tetrahedron Lett.
2001,
42:
3239
<A NAME="RA46707ST-12M">12m </A>
Kinderman SS.
van Maarseveen JH.
Schoemaker HE.
Hiemstra H.
Rutjes PJT.
Org. Lett.
2001,
3:
2045
<A NAME="RA46707ST-12N">12n </A>
Gurjar MK.
Yakambram P.
Tetrahedron Lett.
2001,
42:
3633
<A NAME="RA46707ST-12O">12o </A>
Hoye TR.
Promo MA.
Tetrahedron Lett.
1999,
40:
1429
For selected examples of spiro-annulation, see:
<A NAME="RA46707ST-13A">13a </A>
Undheim K.
Efskind J.
Tetrahedron
2000,
56:
4847
<A NAME="RA46707ST-13B">13b </A>
Maier ME.
Bugl M.
Synlett
1998,
1390
<A NAME="RA46707ST-13C">13c </A>
van Hooft PAV.
Leeuwenburgh MA.
Overkleeft HS.
van der Marel GA.
van Boeckel CAA.
van Boom JH.
Tetrahedron Lett.
1998,
39:
6061
<A NAME="RA46707ST-13D">13d </A>
Hammer K.
Undheim K.
Tetrahedron
1997,
53:
10603
<A NAME="RA46707ST-13E">13e </A>
Hammer K.
Undheim K.
Tetrahedron
1997,
53:
2309
<A NAME="RA46707ST-14">14 </A>
Kotha S.
Mandal K.
Tiwari A.
Mobin SM.
Chem. Eur. J.
2006,
12:
8024
<A NAME="RA46707ST-15A">15a </A>
Cyclophane Chemistry for the 21st Century
Takamura H.
Research Signpost;
Trivandrum:
2002.
<A NAME="RA46707ST-15B">15b </A>
Prautzsch V.
Ibach S.
Vögtle F.
J. Inclusion Phenom. Macrocyclic Chem.
1999,
33:
427
<A NAME="RA46707ST-15C">15c </A>
Weber E.
Cyclophanes
Springer;
Berlin:
1994.
<A NAME="RA46707ST-15D">15d </A>
Vögtle F.
Cyclophane Chemistry: Synthesis, Structures, and Reactions
John Wiley & Sons;
Chichester:
1993.
<A NAME="RA46707ST-15E">15e </A>
Diederich F.
Cyclophanes
Royal Society of Chemistry;
Cambridge:
1991.
For the synthesis of cyclophanes using metathesis reactions, see:
<A NAME="RA46707ST-16A">16a </A>
Branowska D.
Buczek I.
Kalińska K.
Nowaczyk J.
Rykowski A.
Tetrahedron Lett.
2005,
46:
8539
<A NAME="RA46707ST-16B">16b </A>
Ueda T.
Kanomata N.
Machida H.
Org. Lett.
2005,
7:
2365
<A NAME="RA46707ST-16C">16c </A>
Branowska D.
Rykowski A.
Tetrahedron
2005,
61:
10713
<A NAME="RA46707ST-16D">16d </A>
Erker G.
Kehr G.
Fröhlich R.
J. Organomet. Chem.
2004,
689:
1402
<A NAME="RA46707ST-16E">16e </A>
Watson MD.
Jäckel F.
Severin N.
Rabe JP.
Müllen K.
J. Am. Chem. Soc.
2004,
126:
1402
<A NAME="RA46707ST-16F">16f </A>
Martinez V.
Blais J.-C.
Bravic G.
Astruc D.
Organometallics
2004,
23:
861
<A NAME="RA46707ST-16G">16g </A>
Song D.
Blond G.
Fürstner A.
Tetrahedron
2003,
59:
6899
<A NAME="RA46707ST-16H">16h </A>
Martinez V.
Blais J.
Astruc D.
Angew. Chem. Int. Ed.
2003,
42:
4366
<A NAME="RA46707ST-16I">16i </A>
Tae J.
Yang Y.
Org. Lett.
2003,
5:
741
<A NAME="RA46707ST-16J">16j </A>
Layton ME.
Morales CA.
Shair MD.
J. Am. Chem. Soc.
2002,
124:
773
<A NAME="RA46707ST-16K">16k </A>
Fürstner A.
Stelzer F.
Rumbo A.
Krause H.
Chem. Eur. J.
2002,
8:
1856
<A NAME="RA46707ST-16L">16l </A>
Smith AB.
Adams CM.
Kozmin SA.
Paone DV.
J. Am. Chem. Soc.
2001,
123:
5925
<A NAME="RA46707ST-16M">16m </A>
Smith AB.
Adams CM.
Kozmin SA.
J. Am. Chem. Soc.
2001,
123:
990
<A NAME="RA46707ST-16N">16n </A>
Locke AJ.
Jones C.
Richards CJ.
J. Organomet. Chem.
2001,
637-639:
669
For the synthesis of cyclophanes using Suzuki- Miyaura coupling reactions, see:
<A NAME="RA46707ST-17A">17a </A>
Lépine R.
Zhu J.
Org. Lett.
2005,
7:
2981
<A NAME="RA46707ST-17B">17b </A>
Roche AJ.
Canturk B.
Org. Biomol. Chem.
2005,
3:
515
<A NAME="RA46707ST-17C">17c </A>
Wang W.
Xu J.
Lai Y.-H.
Org. Lett.
2003,
5:
2765
<A NAME="RA46707ST-17D">17d </A>
Smith BB.
Hill DE.
Cropp TA.
Walsh RD.
Cartrette D.
Hipps S.
Shachter AM.
Pennington WT.
Kwochka WR.
J. Org. Chem.
2002,
67:
5333
<A NAME="RA46707ST-17E">17e </A>
Bodwell GJ.
Li J.
Org. Lett.
2002,
4:
127
<A NAME="RA46707ST-17F">17f </A>
Bodwell GJ.
Li J.
Angew. Chem. Int. Ed.
2002,
41:
3261
<A NAME="RA46707ST-17G">17g </A>
Carbonnelle A.-C.
Zhu J.
Org. Lett.
2000,
2:
3477
<A NAME="RA46707ST-18">18 </A> For the synthesis of cyclophanes using a combination of metathesis and Suzuki- Miyaura coupling reactions, see:
Camacho DH.
Salo EV.
Guan Z.
Org. Lett.
2004,
6:
865
<A NAME="RA46707ST-19">19 </A>
Kotha S.
Acc. Chem. Res.
2003,
36:
342
<A NAME="RA46707ST-20">20 </A>
Kotha S.
Halder S.
Damodharan L.
Pattabhi V.
Bioorg. Med. Chem. Lett.
2002,
12:
1113
<A NAME="RA46707ST-21">21 </A>
Kotha S.
Halder S.
ARKIVOC
2005,
(iii):
56
<A NAME="RA46707ST-22">22 </A>
Kotha S.
Lahiri K.
Kashinath D.
Tetrahedron
2002,
58:
9633
<A NAME="RA46707ST-23A">23a </A>
Kotha S.
Behera M.
J. Peptide Res.
2004,
64:
72
<A NAME="RA46707ST-23B">23b </A>
Kotha S.
Behera M.
Shah V.
Synlett
2005,
1877
<A NAME="RA46707ST-24A">24a </A>
Damodharan L.
Pattabhi V.
Behera M.
Kotha S.
J. Mol. Struct.
2004,
705:
101
<A NAME="RA46707ST-24B">24b </A>
Damodharan L.
Pattabhi V.
Behera M.
Kotha S.
Acta Crystallogr., Sect. C
2004,
60:
o527
<A NAME="RA46707ST-24C">24c </A>
Damodharan L.
Pattabhi V.
Behera M.
Kotha S.
Acta Crystallogr., Sect. C
2003,
59:
o216
<A NAME="RA46707ST-24D">24d </A>
Damodharan L.
Ibrahim BS.
Pattabhi V.
Halder S.
Kotha S.
Acta Crystallogr., Sect. E
2002,
58:
o1038
<A NAME="RA46707ST-25A">25a </A>
Kotha S.
Lahiri K.
Eur. J. Org. Chem.
2007,
1221
<A NAME="RA46707ST-25B">25b </A>
Kotha S.
Mandal K.
Eur. J. Org. Chem.
2006,
5387
<A NAME="RA46707ST-25C">25c </A>
Kotha S.
Mandal K.
Arora KK.
Pedireddi VR.
Adv. Synth. Catal.
2005,
347:
1215
<A NAME="RA46707ST-26">26 </A>
Simpkins NS.
Sulphones in Organic Synthesis
Pergamon;
Oxford:
1993.
<A NAME="RA46707ST-27A">27a </A>
Kotha S.
Khedkar P.
Ghosh AK.
Eur. J. Org. Chem.
2005,
3581
<A NAME="RA46707ST-27B">27b </A>
Yao Q.
Org. Lett.
2002,
4:
427
<A NAME="RA46707ST-27C">27c </A>
Paquette LA.
Fabris F.
Tae J.
Gallucci JC.
Hofferberth JE.
J. Am. Chem. Soc.
2000,
122:
3391
<A NAME="RA46707ST-27D">27d </A>
Miller JF.
Termin A.
Koch K.
Piscopio AD.
J. Org. Chem.
1998,
63:
3158
<A NAME="RA46707ST-28A">28a </A>
Boal AK.
Guryanov I.
Moretto A.
Crisma M.
Lanni EL.
Toniolo C.
Grubbs RH.
O’Leary DJ.
J. Am. Chem. Soc.
2007,
129:
6986
<A NAME="RA46707ST-28B">28b </A>
Kotha S.
Lahiri K.
Curr. Med. Chem.
2005,
12:
849
<A NAME="RA46707ST-28C">28c </A>
Miller SJ.
Blackwell HE.
Grubbs RH.
J. Am. Chem. Soc.
1996,
118:
9606
<A NAME="RA46707ST-29">29 </A>
Kotha S.
Sreenivasachary N.
Bioorg. Med. Chem. Lett.
1998,
8:
257
<A NAME="RA46707ST-30A">30a </A>
Kotha S.
Brahmachary E.
J. Org. Chem.
2000,
65:
1359
<A NAME="RA46707ST-30B">30b </A>
Kotha S.
Brahmachary E.
Bioorg. Med. Chem. Lett.
1997,
7:
2719
<A NAME="RA46707ST-31A">31a </A>
Kotha S.
Sreenivasachary N.
Mohanraja K.
Durani S.
Bioorg. Med. Chem. Lett.
2001,
11:
1421
<A NAME="RA46707ST-31B">31b </A>
Bodanszky M.
Bodanszky A.
The Practice of Peptide Synthesis
Springer;
New York:
1984.
<A NAME="RA46707ST-32A">32a </A>
Casabona D.
Jiménez AI.
Cativiela C.
Tetrahedron
2007,
63:
5056
<A NAME="RA46707ST-32B">32b </A>
Ohwada T.
Kojima D.
Kiwada T.
Futaki S.
Sugiura Y.
Yamaguchi K.
Nishi Y.
Kobayashi Y.
Chem. Eur. J.
2004,
10:
617
<A NAME="RA46707ST-33">33 </A>
Kotha S.
Singh K.
Tetrahedron Lett.
2004,
45:
9607
<A NAME="RA46707ST-34">34 </A>
Kotha S.
Khedkar P.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2007,
46:
975
<A NAME="RA46707ST-35">35 </A>
Kotha S.
Stoodley RJ.
Bioorg. Med. Chem.
2002,
10:
621
<A NAME="RA46707ST-36A">36a </A>
Kotha S.
Mandal K.
Tetrahedron Lett.
2004,
45:
2585
For related examples, see:
<A NAME="RA46707ST-36B">36b </A>
Nguyen VT.
D’hooghe M.
Pattyn S.
de Kimpe N.
Synlett
2004,
1913
<A NAME="RA46707ST-36C">36c </A>
Chattopadhyay SK.
Pal BK.
Maity S.
Chem. Lett.
2003,
32:
1190
<A NAME="RA46707ST-36D">36d </A>
Marner F.-J.
Horper W.
Helv. Chim. Acta
1992,
75:
1557
<A NAME="RA46707ST-37A">37a </A>
Kotha S.
Mandal K.
Deb AC.
Banerjee S.
Tetrahedron Lett.
2004,
45:
9603
<A NAME="RA46707ST-37B">37b </A>
Kotha S.
Shah VR.
Mandal K.
Adv. Synth. Catal.
2007,
349:
1159
<A NAME="RA46707ST-38A">38a </A>
Kotha S.
Dipak MK.
Chem. Eur. J.
2006,
12:
4446
<A NAME="RA46707ST-38B">38b </A>
Kotha S.
Manivannan E.
Sreenivasachary N.
J. Chem. Soc., Perkin Trans. 1
1999,
2845
<A NAME="RA46707ST-39">39 </A>
Kotha S.
Ghosh AK.
Tetrahedron
2004,
60:
10833
<A NAME="RA46707ST-40">40 </A>
Li JJ.
Name Reactions
Springer;
Berlin:
2002.
<A NAME="RA46707ST-41">41 </A>
Kotha S.
Sreenivasachary N.
Brahmachary E.
Tetrahedron Lett.
1998,
39:
2805
<A NAME="RA46707ST-42">42 </A>
Kotha S.
Sreenivasachary N.
Brahmachary E.
Eur. J. Org. Chem.
2001,
787
<A NAME="RA46707ST-43">43 </A>
Kotha S.
Sreenivasachary N.
J. Indian Inst. Sci.
2001,
81:
277
<A NAME="RA46707ST-44">44 </A>
Kotha S.
Sreenivasachary N.
Chem. Commun.
2000,
503
<A NAME="RA46707ST-45">45 </A>
Kotha S.
Sreenivasachary N.
Eur. J. Org. Chem.
2001,
3375
<A NAME="RA46707ST-46A">46a </A>
Kaliappan KP.
Ravikumar V.
Org. Biomol. Chem.
2005,
3:
848
<A NAME="RA46707ST-46B">46b </A>
Kaliappan KP.
Nandurdikar RS.
Org. Biomol. Chem.
2005,
3:
3613
<A NAME="RA46707ST-46C">46c </A>
Banti D.
North M.
Tetrahedron Lett.
2003,
44:
8157
<A NAME="RA46707ST-46D">46d </A>
Moreno-Mañas M.
Pleixats R.
Santamaria A.
Synlett
2001,
1784
<A NAME="RA46707ST-46E">46e </A>
Semeril D.
Cleran M.
Bruneau C.
Dixneuf PH.
Adv. Synth. Catal.
2001,
343:
184
<A NAME="RA46707ST-47A">47a </A>
Chen R.
Lee V.
Adlington RM.
Baldwin JE.
Synthesis
2007,
113
<A NAME="RA46707ST-47B">47b </A>
Diver ST.
J. Mol. Catal. A: Chem.
2006,
254:
29
<A NAME="RA46707ST-47C">47c </A>
Kim M.
Lee D.
Org. Lett.
2005,
7:
1865
<A NAME="RA46707ST-47D">47d </A>
Mix S.
Blechert S.
Org. Lett.
2005,
7:
2015
<A NAME="RA46707ST-47E">47e </A>
Middleton MD.
Diver ST.
Tetrahedron Lett.
2005,
46:
4039
<A NAME="RA46707ST-47F">47f </A>
Connon SJ.
Blechert S.
Angew. Chem. Int. Ed.
2003,
42:
1900
<A NAME="RA46707ST-47G">47g </A>
Mori M.
Tonogaki K.
Nishiguchi N.
J. Org. Chem.
2002,
67:
224
<A NAME="RA46707ST-47H">47h </A>
Rodríguez-Conesa S.
Candal P.
Jiménez C.
Rodríguez J.
Tetrahedron Lett.
2001,
42:
6699
<A NAME="RA46707ST-47I">47i </A>
Mori M.
Sakakibara N.
Kinoshita A.
J. Org. Chem.
1998,
63:
6082
<A NAME="RA46707ST-47J">47j </A>
Kinoshita A.
Sakakibara N.
Mori M.
J. Am. Chem. Soc.
1997,
119:
12388
<A NAME="RA46707ST-48">48 </A>
Kotha S.
Halder S.
Brahmachary E.
Ganesh T.
Synlett
2000,
853
<A NAME="RA46707ST-49">49 </A>
Kotha S.
Halder S.
Brahmachary E.
Tetrahedron
2002,
58:
9203
<A NAME="RA46707ST-50">50 </A>
Kotha S.
Mandal K.
Banerjee S.
Mobin SM.
Eur. J. Org. Chem.
2007,
1244
<A NAME="RA46707ST-51">51 </A>
Arjona O.
Csákӱ AG.
Plumet J.
Eur. J. Org. Chem.
2003,
611
<A NAME="RA46707ST-52A">52a </A>
Kotha S.
Deb AC.
Chattopadhyay S.
Lett. Org. Chem.
2006,
3:
128
<A NAME="RA46707ST-52B">52b </A>
Kotha S.
Manivannan E.
J. Chem. Soc., Perkin Trans. 1
2001,
2543
<A NAME="RA46707ST-53">53 </A>
Norris DJ.
Corrigan JF.
Sun Y.
Taylor NJ.
Collins S.
Can. J. Chem.
1993,
71:
1029
For the synthesis of trisubstituted benzene derivatives via intramolecular [2+2+2]
cycloaddition, see:
<A NAME="RA46707ST-54A">54a </A>
Hoven GB.
Efskind J.
Rømming C.
Undheim K.
J. Org. Chem.
2002,
67:
2459
<A NAME="RA46707ST-54B">54b </A>
Roy R.
Das SK.
Chem. Commun.
2000,
519
<A NAME="RA46707ST-54C">54c </A>
Peters J.-U.
Blechert S.
Chem. Commun.
1997,
1983
For recent reviews on [2+2+2] cycloaddition, see:
<A NAME="RA46707ST-54D">54d </A>
Yamamoto Y.
Curr. Org. Chem.
2005,
9:
503
<A NAME="RA46707ST-54E">54e </A>
Kotha S.
Brahmachary E.
Lahiri K.
Eur. J. Org. Chem.
2005,
4741
<A NAME="RA46707ST-55">55 </A>
Kotha, S.; Vinodkumar, R.; Lahiri, K. unpublished results.
<A NAME="RA46707ST-56A">56a </A>
Fogg DE.
dos Santos EN.
Coord. Chem. Rev.
2004,
248:
2365 ; and references cited therein
<A NAME="RA46707ST-56B">56b </A>
Ho TL.
Tandem Organic Reactions
John Wiley & Sons;
New York:
1992.
<A NAME="RA46707ST-56C">56c </A>
Tietze LF.
Brasche G.
Gericke KM.
Domino Reactions in Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
<A NAME="RA46707ST-57">57 </A>
Kotha S.
Mandal K.
J. Organomet. Chem.
2007,
692:
4921
<A NAME="RA46707ST-58">58 </A>
Kotha S.
Singh K.
Eur. J. Org. Chem.
2007, in press (DOI: 10.1002/ejoc.200700744)