Zusammenfassung
Apolipoprotein A5 (ApoA5) wurde 2001 zeitgleich durch Sequenzanalyse als Lipoprotein
und als Regenerationsprotein der Leber entdeckt. Die wichtigste metabolische Funktion
von ApoA5 ist die Senkung der Plasma-Triglyzeride (TG). Nach seiner hepatischer Produktion
und Sekretion aktiviert ApoA5 die plasmatische, durch proteoglykangebundene Lipoproteinlipase
(LPL) vermittelte TG-Hydrolyse von VLDL und Chylomikronen. Polymorphismen im ApoA5-Gen
(z. B. - 1131T > C, S19W und G185C) sind vergleichsweise häufig und zeigen durchweg
eine Assoziation mit erhöhten Plasma-TG-Spiegeln bei Patienten. Schwere strukturelle
Proteinveränderungen (Q139X, Q148X, IVS3 + 3G > C, Q97X) können ähnlich wie Mutationen
der LPL zur Chylomikronämie führen. Mehrere Studien fanden bei Vorliegen von ApoA5-Mutationen
ein erhöhtes Risiko für Koronare Herzerkrankung. Interessanterweise legen die Ergebnisse
einiger Publikationen nahe, dass bestimmte Polymorphismen im ApoA5-Gen das Ansprechen
einer Fibrat-Therapie verbessern und vor Adipositas schützen könnten. Die Plasma-Konzentration
von ApoA5 ist vergleichsweise gering (0,1-0,4 µg / ml); und es ist unklar, warum die
ApoA5-Konzentration im Plasma in den meisten Studien positiv mit den TG-Spiegeln korreliert.
ApoA5 ist also ein noch nicht lange bekannter wichtiger Determinator der Plasma-TG
bei Patienten. Trotz einiger offener Fragen zu seiner molekularen Funktion sind weitere
Daten zur diagnostischen und therapeutischen Relevanz von ApoA5 von sehr hohem klinischem
Interesse.
Abstract
Apolipoprotein A5 (ApoA5) was discovered in 2001 simultaneously by comparative sequencing
and as a liver regeneration protein. The most striking metabolic function of ApoA5
is the reduction of plasma triglyceride (TG). It is produced and secrated by the liver
und activates the plasmatic, lipoprotein lipase (LPL) mediated hydrolysis of TG from
VLDL and chylomicrons. ApoA5 gene polymorphisms (e. g., - 1131T > C, S19W and G185C)
are quite common and they are consistently associated with plasma TG levels in patients.
Severe structural mutations (Q139X, Q148X, IVS3 + 3G > C and Q97X) result into chylomicronemia,
as do mutations in the LPL gene. Some studies show, that the presence of apoA5 mutations
can increase the risk of coronary heart disease. At the other hand, there are publications
suggesting that certain apoA5 polymorphisms can improve the sensibility to fibrates
and protect from adiposity. The plasma concentration of apoA5 is low (0.1-0.4 µg /
ml), and it is not clear, why its plasma concentration is positively correlated with
TG levels. In conclusion, apo5 is a relatively new, important regulator of plasma
TG levels in patients. Despite of some open questions, further information about its
clinical diagnostic and therapeutic relevance is expected with great interest.
Schlüsselwörter
Lipide - Lipoprotein - Triglyzeride - Apoproteine - Arteriosklerose
Key words
lipids - lipoproteins - triglycerides - apoproteins - atherosclerosis
Literatur
- 1
Lamant M, Smih F, Harmancey R et al.
ApoO, a novel apolipoprotein, is an original glycoprotein up-regulated by diabetes
in human heart.
J Biol Chem.
2006;
281
36289-36302
- 2
O'Bryan M K, Foulds L M, Cannon J F et al.
Identification of a novel apolipoprotein, ApoN, in ovarian follicular fluid.
Endocrinology.
2004;
145
5231-5242
- 3
Wolfrum C, Poy M N, Stoffel M.
Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL
and protects against atherosclerosis.
Nat Med.
2005;
11
418-422
- 4
Pennacchio L A, Olivier M, Hubacek J A et al.
An apolipoprotein influencing triglycerides in humans and mice revealed by comparative
sequencing.
Science.
2001;
294
169-173
- 5
van der Vliet H N, Sammels M G, Leegwater A C et al.
Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver
regeneration.
J Biol Chem.
2001;
276
44512-44520
- 6
Alborn W E, Johnson M G, Prince M J, Konrad R J.
Definitive N-terminal protein sequence and further characterization of the novel apolipoprotein
A5 in human serum.
Clin Chem.
2006;
52
514-517
- 7
Weinberg R B, Cook V R, Beckstead J A et al.
Structure and interfacial properties of human apolipoprotein A-V.
J Biol Chem.
2003;
278
34438-34444
- 8
O'Brien P J, Alborn W E, Sloan J H et al.
The novel apolipoprotein A5 is present in human derum, is associated with VLDL, HDL,
and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins.
Clin Chem.
2005;
51
351-359
- 9
Ishihara M, Kujiraoka T, Iwasaki T et al.
A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration.
J Lipid Res.
2005;
46
2015-2022
- 10
Pennacchio L A, Olivier M, Hubacek J A et al.
Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels.
Hum Mol Genet.
2002;
11
3031-3038
- 11
Chandak G R, Ward K J, Yajnik C S et al.
Triglyceride associated polymorphisms of the APOA5 gene have very different allele
frequencies in Pune, India compared to Europeans.
BMC Med Genet.
2006;
7
76
- 12
Kao J T, Wen H C, Chien K L, Hsu H C, Lin S W.
A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia.
Hum Mol Genet.
2003;
12
2533-2539
- 13
Talmud P J, Palmen J, Putt W, Lins L, Humphries S E.
Determination of the functionality of common APOA5 polymorphisms.
J Biol Chem.
2005;
280
28215-28220
- 14
Ahituv N, Akiyama J, Chapman-Helleboid A, Fruchart J, Pennacchio L A.
In vivo characterization of human APOA5 haplotypes.
Genomics.
2007;
90
674-679
- 15
Olivier M, Wang X, Cole R et al.
Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11.
Genomics.
2004;
83
912-923
- 16
Priore Oliva C, Pisciotta L, Li Volti G et al.
Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia.
Arterioscler Thromb Vasc Biol.
2005;
25
411-417
- 17
Talmud P J.
Rare APOA5 mutations - clinical consequences, metabolic and functional effects: an
ENID review.
Atherosclerosis.
2007;
194
287-292
- 18
Marcais C, Verges B, Charriere S et al.
Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein
lipase impairment.
J Clin Invest.
2005;
115
2862-2869
- 19
Merkel M, Heeren J.
Give me A-five for lipoprotein hydrolysis!.
Journal of Clinical Investigation.
2005;
115
2694-2696
- 20
Priore Oliva C, Tarugi P, Calandra S et al.
A novel sequence variant in APOA5 gene found in patients with severe hypertriglyceridemia.
Atherosclerosis.
2006;
188
215-217
- 21
Priore Oliva C, Carubbi F, Schaap F G, Bertolini S, Calandra S.
Hypertriglyceridaemia and low plasma HDL in a patient with apolipoprotein A-V deficiency
due to a novel mutation in the APOA5 gene.
J Intern Med.
2008;
263
450-458
- 22
Pennacchio L A, Rubin E M.
Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels
in humans and mice.
Arterioscler Thromb Vasc Biol.
2003;
23
529-534
- 23
Lai C Q, Tai E S, Tan C E et al.
The APOA5 locus is a strong determinant of plasma triglyceride concentrations across
ethnic groups in Singapore.
J Lipid Res.
2003;
44
2365-2373
- 24
Evans D, Buchwald A, Beil F U.
The single nucleotide polymorphism - 1131T > C in the apolipoprotein A5 (APOA5) gene
is associated with elevated triglycerides in patients with hyperlipidemia.
J Mol Med.
2003;
81
645-654
- 25
Wright W T, Young I S, Nicholls D P et al.
SNPs at the APOA5 gene account for the strong association with hypertriglyceridaemia
at the APOA5 / A4 / C3 / A1 locus on chromosome 11q23 in the Northern Irish population.
Atherosclerosis.
2006;
185
353-360
- 26
Eichenbaum-Voline S, Olivier M, Jones E L et al.
Linkage and association between distinct variants of the APOA1 / C3 / A4 / A5 gene
cluster and familial combined hyperlipidemia.
Arterioscler Thromb Vasc Biol.
2004;
24
167-174
- 27
Ribalta J, Figuera L, Fernandez-Ballart J et al.
Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in
familial combined hyperlipidemia.
Clin Chem.
2002;
48
1597-1600
- 28
Klos K L, Hamon S, Clark A G et al.
APOA5 polymorphisms influence plasma triglycerides in young, healthy African Americans
and whites of the CARDIA Study.
J Lipid Res.
2005;
46
564-571
- 29
van der Vleuten G M, Isaacs A, Zeng W W et al.
Haplotype analyses of the APOA5 gene in patients with familial combined hyperlipidemia.
Biochim Biophys Acta.
2007;
1772
81-88
- 30
Zhao S P, Hu S, Li J et al.
Association of human serum apolipoprotein A5 with lipid profiles affected by gender.
Clin Chim Acta.
2007;
376
68-71
- 31
Dallinga-Thie G M, van Tol A, Hattori H et al.
Plasma apolipoprotein A5 and triglycerides in type 2 diabetes.
Diabetologia.
2006;
49
1505-1511
- 32
Schaap F G, Nierman M C, Berbee J F et al.
Evidence for a complex relationship between apoA-V and apoC-III in patients with severe
hypertriglyceridemia.
J Lipid Res.
2006;
47
2333-2339
- 33
Vaessen S F, Schaap F G, Kuivenhoven J A et al.
Apolipoprotein A-V, triglycerides and risk of coronary artery disease: the prospective
Epic-Norfolk Population Study.
J Lipid Res.
2006;
47
2064-2070
- 34
Talmud P J, Cooper J A, Hattori H et al.
The apolipoprotein A-V genotype and plasma apolipoprotein A-V and triglyceride levels:
prospective risk of type 2 diabetes. Results from the Northwick Park Heart Study II.
Diabetologia.
2006;
49
2337-2340
- 35
Henneman P, Schaap F G, Havekes L M et al.
Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively
correlated with the APOA5 S19W polymorphism.
Atherosclerosis.
2007;
193
129-134
- 36
Alborn W E, Prince M J, Konrad R J.
Relationship of apolipoprotein A5 and apolipoprotein C3 levels to serum triglycerides
in patients with type 2 diabetes.
Clin Chim Acta.
2007;
378
154-158
- 37
Lai C Q, Demissie S, Cupples L A et al.
Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD
risk in the Framingham Heart Study.
J Lipid Res.
2004;
45
2096-2105
- 38
Liu H, Zhang S, Lin J et al.
Association between DNA variant sites in the apolipoprotein A5 gene and coronary heart
disease in Chinese.
Metabolism.
2005;
54
568-572
- 39
Tang Y, Sun P, Guo D et al.
A genetic variant c.553G > T in the apolipoprotein A5 gene is associated with an increased
risk of coronary artery disease and altered triglyceride levels in a Chinese population.
Atherosclerosis.
2006;
185
433-437
- 40
Talmud P J, Martin S, Taskinen M R et al.
APOA5 gene variants, lipoprotein particle distribution, and progression of coronary
heart disease: results from the LOCAT study.
J Lipid Res.
2004;
45
750-756
- 41
Szalai C, Keszei M, Duba J et al.
Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with
an increased susceptibility for coronary artery disease.
Atherosclerosis.
2004;
173
109-114
- 42
Hsu L A, Ko Y L, Chang C J et al.
Genetic variations of apolipoprotein A5 gene is associated with the risk of coronary
artery disease among Chinese in Taiwan.
Atherosclerosis.
2006;
185
143-149
- 43
Elosua R, Ordovas J M, Cupples L A et al.
Variants at the APOA5 locus, association with carotid atherosclerosis, and modification
by obesity: the Framingham Study.
J Lipid Res.
2006;
47
990-996
- 44
Willer C J, Sanna S, Jackson A U et al.
Newly identified loci that influence lipid concentrations and risk of coronary artery
disease.
Nat Genet.
2008;
40
161-169
- 45
Dallongeville J, Cottel D, Montaye M et al.
Impact of APOA5 / A4 / C3 genetic polymorphisms on lipid variables and cardiovascular
disease risk in French men.
Int J Cardiol.
2006;
106
152-156
- 46
Ruiz-Narvaez E A, Yang Y, Nakanishi Y, Kirchdorfer J, Campos H.
APOC3 / A5 haplotypes, lipid levels, and risk of myocardial infarction in the Central
Valley of Costa Rica.
J Lipid Res.
2005;
46
2605-2613
- 47
Lee K W, Ayyobi A F, Frohlich J J, Hill J S.
APOA5 gene polymorphism modulates levels of triglyceride, HDL cholesterol and FER(HDL)
but is not a risk factor for coronary artery disease.
Atherosclerosis.
2004;
176
165-172
- 48
Havasi V, Szolnoki Z, Talian G et al.
Apolipoprotein A5 gene promoter region T-1131C polymorphism associates with elevated
circulating triglyceride levels and confers susceptibility for development of ischemic
stroke.
J Mol Neurosci.
2006;
29
177-183
- 49
Vu-Dac N, Gervois P, Jakel H et al.
Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly
responsive to peroxisome proliferator-activated receptor alpha activators.
J Biol Chem.
2003;
278
17982-17985
- 50
Lai C Q, Arnett D K, Corella D et al.
Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5
variants: the GOLDN study.
Arterioscler Thromb Vasc Biol.
2007;
27
1417-1425
- 51
Corella D, Lai C Q, Demissie S et al.
APOA5 gene variation modulates the effects of dietary fat intake on body mass index
and obesity risk in the Framingham Heart Study.
J Mol Med.
2007;
85
119-128
- 52
Aberle J, Evans D, Beil F U, Seedorf U.
A polymorphism in the apolipoprotein A5 gene is associated with weight loss after
short-term diet.
Clin Genet.
2005;
68
152-154
- 53
Maasz A, Kisfali P, Horvatovich K et al.
Apolipoprotein A5 T-1131C variant confers risk for metabolic syndrome.
Pathol Oncol Res.
2007;
13
243-247
- 54
Yamada Y, Ichihara S, Kato K et al.
Genetic risk for metabolic syndrome: examination of candidate gene polymorphisms related
to lipid metabolism in Japanese people.
J Med Genet.
2008;
45
22-28
- 55
Grallert H, Sedlmeier E M, Huth C et al.
APOA5 variants and metabolic syndrome in Caucasians.
J Lipid Res.
2007;
48
2614-2621
- 56
Aalto-Setala K, Fisher E A, Chen X et al.
Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice.
Diminished very low density lipoprotein fractional catabolic rate associated with
increased apo CIII and reduced apo E on the particles.
J Clin Invest.
1992;
90
1889-1900
- 57
Baroukh N, Bauge E, Akiyama J et al.
Analysis of apolipoprotein A5, c3, and plasma triglyceride concentrations in genetically
engineered mice.
Arterioscler Thromb Vasc Biol.
2004;
24
1297-1302
- 58
Beckstead J A, Oda M N, Martin D D et al.
Structure-function studies of human apolipoprotein A-V: a regulator of plasma lipid
homeostasis.
Biochemistry.
2003;
42
9416-9423
- 59
Schaap F G, Rensen P C, Voshol P J et al.
ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride
(VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis.
J Biol Chem.
2004;
279
27941-27947
- 60
Fruchart-Najib J, Bauge E, Niculescu L S et al.
Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5.
Biochem Biophys Res Commun.
2004;
319
397-404
- 61
Merkel M, Loeffler B, Kluger M et al.
Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins
by interaction with proteoglycan bound lipoprotein lipase.
J Biol Chem.
2005;
280
21553-21560
- 62
Lookene A, Beckstead J A, Nilsson S, Olivecrona G, Ryan R O.
Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism.
J Biol Chem.
2005;
280
25383-25387
- 63
Heeren J, Grewal T, Jackle S, Beisiegel U.
Recycling of apolipoprotein E and lipoprotein lipase through endosomal compartments
in vivo.
J Biol Chem.
2001;
276
42333-42338
- 64
Beisiegel U.
Receptors for triglyceride-rich lipoproteins and their role in lipoprotein metabolism.
Curr Opin Lipidol.
1995;
6
117-122
- 65
Nilsson S K, Lookene A, Beckstead J A et al.
Apolipoprotein A-V interaction with members of the low density lipoprotein receptor
gene family.
Biochemistry.
2007;
46
3896-3904
PD Dr. med. M. Merkel
Asklepios Klinik St. Georg · Abteilung für Innere Medizin
Lohmühlenstr. 5
20099 Hamburg
Phone: +49 / 40 / 18 18 85 30 24
Fax: +49 / 40 / 18 18 85 30 29
Email: m.merkel@asklepios.com