Diabetologie und Stoffwechsel 2008; 3(3): 153-158
DOI: 10.1055/s-2008-1004769
Übersicht

© Georg Thieme Verlag Stuttgart · New York

ApoA5: Ein wichtiger Regulator der Triglyzeride oder nur ein weiteres Apoprotein?

ApoA5: An Important Regulator of Plasma Triglyceride Levels or Just Another Apoprotein?M. Merkel1
  • 1Asklepios Klinik St. Georg, 1. Abteilung für Innere Medizin, Hamburg
Further Information

Publication History

2008

2008

Publication Date:
16 June 2008 (online)

Zusammenfassung

Apolipoprotein A5 (ApoA5) wurde 2001 zeitgleich durch Sequenzanalyse als Lipoprotein und als Regenerationsprotein der Leber entdeckt. Die wichtigste metabolische Funktion von ApoA5 ist die Senkung der Plasma-Triglyzeride (TG). Nach seiner hepatischer Produktion und Sekretion aktiviert ApoA5 die plasmatische, durch proteoglykangebundene Lipoproteinlipase (LPL) vermittelte TG-Hydrolyse von VLDL und Chylomikronen. Polymorphismen im ApoA5-Gen (z. B. - 1131T > C, S19W und G185C) sind vergleichsweise häufig und zeigen durchweg eine Assoziation mit erhöhten Plasma-TG-Spiegeln bei Patienten. Schwere strukturelle Proteinveränderungen (Q139X, Q148X, IVS3 + 3G > C, Q97X) können ähnlich wie Mutationen der LPL zur Chylomikronämie führen. Mehrere Studien fanden bei Vorliegen von ApoA5-Mutationen ein erhöhtes Risiko für Koronare Herzerkrankung. Interessanterweise legen die Ergebnisse einiger Publikationen nahe, dass bestimmte Polymorphismen im ApoA5-Gen das Ansprechen einer Fibrat-Therapie verbessern und vor Adipositas schützen könnten. Die Plasma-Konzentration von ApoA5 ist vergleichsweise gering (0,1-0,4 µg / ml); und es ist unklar, warum die ApoA5-Konzentration im Plasma in den meisten Studien positiv mit den TG-Spiegeln korreliert. ApoA5 ist also ein noch nicht lange bekannter wichtiger Determinator der Plasma-TG bei Patienten. Trotz einiger offener Fragen zu seiner molekularen Funktion sind weitere Daten zur diagnostischen und therapeutischen Relevanz von ApoA5 von sehr hohem klinischem Interesse.

Abstract

Apolipoprotein A5 (ApoA5) was discovered in 2001 simultaneously by comparative sequencing and as a liver regeneration protein. The most striking metabolic function of ApoA5 is the reduction of plasma triglyceride (TG). It is produced and secrated by the liver und activates the plasmatic, lipoprotein lipase (LPL) mediated hydrolysis of TG from VLDL and chylomicrons. ApoA5 gene polymorphisms (e. g., - 1131T > C, S19W and G185C) are quite common and they are consistently associated with plasma TG levels in patients. Severe structural mutations (Q139X, Q148X, IVS3 + 3G > C and Q97X) result into chylomicronemia, as do mutations in the LPL gene. Some studies show, that the presence of apoA5 mutations can increase the risk of coronary heart disease. At the other hand, there are publications suggesting that certain apoA5 polymorphisms can improve the sensibility to fibrates and protect from adiposity. The plasma concentration of apoA5 is low (0.1-0.4 µg / ml), and it is not clear, why its plasma concentration is positively correlated with TG levels. In conclusion, apo5 is a relatively new, important regulator of plasma TG levels in patients. Despite of some open questions, further information about its clinical diagnostic and therapeutic relevance is expected with great interest.

Literatur

  • 1 Lamant M, Smih F, Harmancey R et al. ApoO, a novel apolipoprotein, is an original glycoprotein up-regulated by diabetes in human heart.  J Biol Chem. 2006;  281 36289-36302
  • 2 O'Bryan M K, Foulds L M, Cannon J F et al. Identification of a novel apolipoprotein, ApoN, in ovarian follicular fluid.  Endocrinology. 2004;  145 5231-5242
  • 3 Wolfrum C, Poy M N, Stoffel M. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis.  Nat Med. 2005;  11 418-422
  • 4 Pennacchio L A, Olivier M, Hubacek J A et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing.  Science. 2001;  294 169-173
  • 5 van der Vliet H N, Sammels M G, Leegwater A C et al. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration.  J Biol Chem. 2001;  276 44512-44520
  • 6 Alborn W E, Johnson M G, Prince M J, Konrad R J. Definitive N-terminal protein sequence and further characterization of the novel apolipoprotein A5 in human serum.  Clin Chem. 2006;  52 514-517
  • 7 Weinberg R B, Cook V R, Beckstead J A et al. Structure and interfacial properties of human apolipoprotein A-V.  J Biol Chem. 2003;  278 34438-34444
  • 8 O'Brien P J, Alborn W E, Sloan J H et al. The novel apolipoprotein A5 is present in human derum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins.  Clin Chem. 2005;  51 351-359
  • 9 Ishihara M, Kujiraoka T, Iwasaki T et al. A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration.  J Lipid Res. 2005;  46 2015-2022
  • 10 Pennacchio L A, Olivier M, Hubacek J A et al. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels.  Hum Mol Genet. 2002;  11 3031-3038
  • 11 Chandak G R, Ward K J, Yajnik C S et al. Triglyceride associated polymorphisms of the APOA5 gene have very different allele frequencies in Pune, India compared to Europeans.  BMC Med Genet. 2006;  7 76
  • 12 Kao J T, Wen H C, Chien K L, Hsu H C, Lin S W. A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia.  Hum Mol Genet. 2003;  12 2533-2539
  • 13 Talmud P J, Palmen J, Putt W, Lins L, Humphries S E. Determination of the functionality of common APOA5 polymorphisms.  J Biol Chem. 2005;  280 28215-28220
  • 14 Ahituv N, Akiyama J, Chapman-Helleboid A, Fruchart J, Pennacchio L A. In vivo characterization of human APOA5 haplotypes.  Genomics. 2007;  90 674-679
  • 15 Olivier M, Wang X, Cole R et al. Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11.  Genomics. 2004;  83 912-923
  • 16 Priore Oliva C, Pisciotta L, Li Volti G et al. Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia.  Arterioscler Thromb Vasc Biol. 2005;  25 411-417
  • 17 Talmud P J. Rare APOA5 mutations - clinical consequences, metabolic and functional effects: an ENID review.  Atherosclerosis. 2007;  194 287-292
  • 18 Marcais C, Verges B, Charriere S et al. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment.  J Clin Invest. 2005;  115 2862-2869
  • 19 Merkel M, Heeren J. Give me A-five for lipoprotein hydrolysis!.  Journal of Clinical Investigation. 2005;  115 2694-2696
  • 20 Priore Oliva C, Tarugi P, Calandra S et al. A novel sequence variant in APOA5 gene found in patients with severe hypertriglyceridemia.  Atherosclerosis. 2006;  188 215-217
  • 21 Priore Oliva C, Carubbi F, Schaap F G, Bertolini S, Calandra S. Hypertriglyceridaemia and low plasma HDL in a patient with apolipoprotein A-V deficiency due to a novel mutation in the APOA5 gene.  J Intern Med. 2008;  263 450-458
  • 22 Pennacchio L A, Rubin E M. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice.  Arterioscler Thromb Vasc Biol. 2003;  23 529-534
  • 23 Lai C Q, Tai E S, Tan C E et al. The APOA5 locus is a strong determinant of plasma triglyceride concentrations across ethnic groups in Singapore.  J Lipid Res. 2003;  44 2365-2373
  • 24 Evans D, Buchwald A, Beil F U. The single nucleotide polymorphism - 1131T > C in the apolipoprotein A5 (APOA5) gene is associated with elevated triglycerides in patients with hyperlipidemia.  J Mol Med. 2003;  81 645-654
  • 25 Wright W T, Young I S, Nicholls D P et al. SNPs at the APOA5 gene account for the strong association with hypertriglyceridaemia at the APOA5 / A4 / C3 / A1 locus on chromosome 11q23 in the Northern Irish population.  Atherosclerosis. 2006;  185 353-360
  • 26 Eichenbaum-Voline S, Olivier M, Jones E L et al. Linkage and association between distinct variants of the APOA1 / C3 / A4 / A5 gene cluster and familial combined hyperlipidemia.  Arterioscler Thromb Vasc Biol. 2004;  24 167-174
  • 27 Ribalta J, Figuera L, Fernandez-Ballart J et al. Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia.  Clin Chem. 2002;  48 1597-1600
  • 28 Klos K L, Hamon S, Clark A G et al. APOA5 polymorphisms influence plasma triglycerides in young, healthy African Americans and whites of the CARDIA Study.  J Lipid Res. 2005;  46 564-571
  • 29 van der Vleuten G M, Isaacs A, Zeng W W et al. Haplotype analyses of the APOA5 gene in patients with familial combined hyperlipidemia.  Biochim Biophys Acta. 2007;  1772 81-88
  • 30 Zhao S P, Hu S, Li J et al. Association of human serum apolipoprotein A5 with lipid profiles affected by gender.  Clin Chim Acta. 2007;  376 68-71
  • 31 Dallinga-Thie G M, van Tol A, Hattori H et al. Plasma apolipoprotein A5 and triglycerides in type 2 diabetes.  Diabetologia. 2006;  49 1505-1511
  • 32 Schaap F G, Nierman M C, Berbee J F et al. Evidence for a complex relationship between apoA-V and apoC-III in patients with severe hypertriglyceridemia.  J Lipid Res. 2006;  47 2333-2339
  • 33 Vaessen S F, Schaap F G, Kuivenhoven J A et al. Apolipoprotein A-V, triglycerides and risk of coronary artery disease: the prospective Epic-Norfolk Population Study.  J Lipid Res. 2006;  47 2064-2070
  • 34 Talmud P J, Cooper J A, Hattori H et al. The apolipoprotein A-V genotype and plasma apolipoprotein A-V and triglyceride levels: prospective risk of type 2 diabetes. Results from the Northwick Park Heart Study II.  Diabetologia. 2006;  49 2337-2340
  • 35 Henneman P, Schaap F G, Havekes L M et al. Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively correlated with the APOA5 S19W polymorphism.  Atherosclerosis. 2007;  193 129-134
  • 36 Alborn W E, Prince M J, Konrad R J. Relationship of apolipoprotein A5 and apolipoprotein C3 levels to serum triglycerides in patients with type 2 diabetes.  Clin Chim Acta. 2007;  378 154-158
  • 37 Lai C Q, Demissie S, Cupples L A et al. Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study.  J Lipid Res. 2004;  45 2096-2105
  • 38 Liu H, Zhang S, Lin J et al. Association between DNA variant sites in the apolipoprotein A5 gene and coronary heart disease in Chinese.  Metabolism. 2005;  54 568-572
  • 39 Tang Y, Sun P, Guo D et al. A genetic variant c.553G > T in the apolipoprotein A5 gene is associated with an increased risk of coronary artery disease and altered triglyceride levels in a Chinese population.  Atherosclerosis. 2006;  185 433-437
  • 40 Talmud P J, Martin S, Taskinen M R et al. APOA5 gene variants, lipoprotein particle distribution, and progression of coronary heart disease: results from the LOCAT study.  J Lipid Res. 2004;  45 750-756
  • 41 Szalai C, Keszei M, Duba J et al. Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with an increased susceptibility for coronary artery disease.  Atherosclerosis. 2004;  173 109-114
  • 42 Hsu L A, Ko Y L, Chang C J et al. Genetic variations of apolipoprotein A5 gene is associated with the risk of coronary artery disease among Chinese in Taiwan.  Atherosclerosis. 2006;  185 143-149
  • 43 Elosua R, Ordovas J M, Cupples L A et al. Variants at the APOA5 locus, association with carotid atherosclerosis, and modification by obesity: the Framingham Study.  J Lipid Res. 2006;  47 990-996
  • 44 Willer C J, Sanna S, Jackson A U et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease.  Nat Genet. 2008;  40 161-169
  • 45 Dallongeville J, Cottel D, Montaye M et al. Impact of APOA5 / A4 / C3 genetic polymorphisms on lipid variables and cardiovascular disease risk in French men.  Int J Cardiol. 2006;  106 152-156
  • 46 Ruiz-Narvaez E A, Yang Y, Nakanishi Y, Kirchdorfer J, Campos H. APOC3 / A5 haplotypes, lipid levels, and risk of myocardial infarction in the Central Valley of Costa Rica.  J Lipid Res. 2005;  46 2605-2613
  • 47 Lee K W, Ayyobi A F, Frohlich J J, Hill J S. APOA5 gene polymorphism modulates levels of triglyceride, HDL cholesterol and FER(HDL) but is not a risk factor for coronary artery disease.  Atherosclerosis. 2004;  176 165-172
  • 48 Havasi V, Szolnoki Z, Talian G et al. Apolipoprotein A5 gene promoter region T-1131C polymorphism associates with elevated circulating triglyceride levels and confers susceptibility for development of ischemic stroke.  J Mol Neurosci. 2006;  29 177-183
  • 49 Vu-Dac N, Gervois P, Jakel H et al. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators.  J Biol Chem. 2003;  278 17982-17985
  • 50 Lai C Q, Arnett D K, Corella D et al. Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study.  Arterioscler Thromb Vasc Biol. 2007;  27 1417-1425
  • 51 Corella D, Lai C Q, Demissie S et al. APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study.  J Mol Med. 2007;  85 119-128
  • 52 Aberle J, Evans D, Beil F U, Seedorf U. A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet.  Clin Genet. 2005;  68 152-154
  • 53 Maasz A, Kisfali P, Horvatovich K et al. Apolipoprotein A5 T-1131C variant confers risk for metabolic syndrome.  Pathol Oncol Res. 2007;  13 243-247
  • 54 Yamada Y, Ichihara S, Kato K et al. Genetic risk for metabolic syndrome: examination of candidate gene polymorphisms related to lipid metabolism in Japanese people.  J Med Genet. 2008;  45 22-28
  • 55 Grallert H, Sedlmeier E M, Huth C et al. APOA5 variants and metabolic syndrome in Caucasians.  J Lipid Res. 2007;  48 2614-2621
  • 56 Aalto-Setala K, Fisher E A, Chen X et al. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles.  J Clin Invest. 1992;  90 1889-1900
  • 57 Baroukh N, Bauge E, Akiyama J et al. Analysis of apolipoprotein A5, c3, and plasma triglyceride concentrations in genetically engineered mice.  Arterioscler Thromb Vasc Biol. 2004;  24 1297-1302
  • 58 Beckstead J A, Oda M N, Martin D D et al. Structure-function studies of human apolipoprotein A-V: a regulator of plasma lipid homeostasis.  Biochemistry. 2003;  42 9416-9423
  • 59 Schaap F G, Rensen P C, Voshol P J et al. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis.  J Biol Chem. 2004;  279 27941-27947
  • 60 Fruchart-Najib J, Bauge E, Niculescu L S et al. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5.  Biochem Biophys Res Commun. 2004;  319 397-404
  • 61 Merkel M, Loeffler B, Kluger M et al. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan bound lipoprotein lipase.  J Biol Chem. 2005;  280 21553-21560
  • 62 Lookene A, Beckstead J A, Nilsson S, Olivecrona G, Ryan R O. Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism.  J Biol Chem. 2005;  280 25383-25387
  • 63 Heeren J, Grewal T, Jackle S, Beisiegel U. Recycling of apolipoprotein E and lipoprotein lipase through endosomal compartments in vivo.  J Biol Chem. 2001;  276 42333-42338
  • 64 Beisiegel U. Receptors for triglyceride-rich lipoproteins and their role in lipoprotein metabolism.  Curr Opin Lipidol. 1995;  6 117-122
  • 65 Nilsson S K, Lookene A, Beckstead J A et al. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family.  Biochemistry. 2007;  46 3896-3904

PD Dr. med. M. Merkel

Asklepios Klinik St. Georg · Abteilung für Innere Medizin

Lohmühlenstr. 5

20099 Hamburg

Phone: +49 / 40 / 18 18 85 30 24

Fax: +49 / 40 / 18 18 85 30 29

Email: m.merkel@asklepios.com

    >