Der Nuklearmediziner 2008; 31(2): 114-131
DOI: 10.1055/s-2008-1004783
CME Beitrag

© Georg Thieme Verlag Stuttgart · New York

Zielgerichtete, rezeptorvermittelte Radionuklidtherapie (Radiopeptidtherapie) neuroendokriner Tumoren

Targeted Radionuclide Therapy für Neuroendocrine TumoursF. Forrer1
  • 1Nuklearmedizin, Universitätsspital Basel, Schweiz
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
05. Juni 2008 (online)

Zusammenfassung

Die zielgerichtete, peptidvermittelte Radionuklidtherapie mit radioaktiv markierten Somatostatinanalogen gewinnt zunehmend an Bedeutung in der Behandlung von metastasierten, somatostatinrezeptorexprimierenden Tumoren. Die Verwendung radioaktiv markierter Somatostatine zur Bildgebung ist zurzeit der Goldstandard zum Staging neuroendokriner Tumore. Da der Somatostatinrezeptor durch die meisten neuroendokrinen Tumore stark überexprimiert wird, kann ein sehr hohes Tumor zu Hintergrund Verhältnis erreicht werden. Es ist daher nahe liegend in einem weiteren Schritt diese Tumore mit Radiopeptiden und höheren Radioaktivitäten zu behandeln. Viele Patienten wurden bereits mit radioaktiven Somatostatinen behandelt. Rund ein Viertel aller Patienten erfährt eine Tumorreduktion von mehr als 50 %. Schwere Nebenwirkungen sind selten und die Behandlung ist im Allgemeinen gut verträglich. Dieser Artikel soll einen Überblick verschaffen über die Entstehung, den gegenwärtigen Stand sowie über mögliche Entwicklungen dieser Behandlung in der Zukunft. Außerdem soll die Indikationsstellung sowie die nötigen Voraussetzungen zu einer solchen Therapie diskutiert werden.

Abstract

Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues is an emerging and convincing treatment modality for patients with unresectable, somatostatin receptor-positive neuroendocrine tumours. Using radiolabelled somatostatin analogues for imaging became the gold standard for staging of neuroendocrine tumours. The somatostatin receptor is strongly over-expressed in most neuroendocrine tumours. This results in high tumour to background ratios. Consequently, the next step was trying to treat these patients by increasing the radioactivity of the administered radiolabelled somatostatin analogue in an attempt to induce tumour cure. Many patients have been treated successfully with this approach since then, roughly one quarter of them achieving objective tumour shrinkage > 50 %. Serious side-effects were rare. To date, benefit is proven concerning tumour mass, quality of life and survival. This article reviews the effectiveness and safety of the different radiolabelled somatostatin analogues used. Furthermore, clinical issues, including indication and timing of therapy, are discussed.

Literatur

  • 1 Reubi J C. Peptide receptors as molecular targets for cancer diagnosis and therapy.  Endocr Rev. 2003;  24 389-427
  • 2 Reubi J C, Waser B, Schaer J C, Laissue J A. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands.  Eur J Nucl Med. 2001;  28 836-846
  • 3 Reubi J C, Waser B, Liu Q et al. Subcellular distribution of somatostatin sst2A receptors in human tumors of the nervous and neuroendocrine systems: membranous versus intracellular location.  J Clin Endocrinol Metab. 2000;  85 3882-3891
  • 4 Krenning E P, Kwekkeboom D J, Bakker W H et al. Somatostatin receptor scintigraphy with [111In-DTPA-d-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients.  Eur J Nucl Med. 1993;  20 716-731
  • 5 Kwekkeboom D J, Krenning E P, de Jong M. Peptide receptor imaging and therapy.  J Nucl Med. 2000;  41 1704-1713
  • 6 Hofmann M, Maecke H, Borner R et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data.  Eur J Nucl Med. 2001;  28 1751-1757
  • 7 Maecke H R, Hofmann M, Haberkorn U. (68)Ga-labeled peptides in tumor imaging.  J Nucl Med. 2005;  46 Suppl 1 172S-178S
  • 8 Wester H J, Schottelius M, Scheidhauer K et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide.  Eur J Nucl Med Mol Imaging. 2003;  30 117-122
  • 9 Valkema R, De Jong M, Bakker W H et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience.  Semin Nucl Med. 2002;  32 110-122
  • 10 McCarthy K E, Woltering E A, Anthony L B. In situ radiotherapy with 111In-pentetreotid. State of the art and perspectives.  Q J Nucl Med. 2000;  44 88-95
  • 11 Anthony L B, Woltering E A, Espenan G D et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies.  Semin Nucl Med. 2002;  32 123-132
  • 12 Buscombe J R, Caplin M E, Hilson A J. Long-term efficacy of high-activity 111In-pentetreotide therapy in patients with disseminated neuroendocrine tumors.  J Nucl Med. 2003;  44 1-6
  • 13 Otte A, Herrmann R, Heppeler A et al. Yttrium-90 DOTATOC: first clinical results.  Eur J Nucl Med. 1999;  26 1439-1447
  • 14 Waldherr C, Pless M, Maecke H R et al. The clinical value of [90Y-DOTA]-dPhe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study.  Ann Oncol. 2001;  12 941-945
  • 15 Waldherr C, Pless M, Maecke H R et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC.  J Nucl Med. 2002;  43 610-616
  • 16 Forrer F, Waldherr C, Maecke H R, Mueller-Brand J. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors.  Anticancer Res. 2006;  26 703-707
  • 17 Bodei L, Cremonesi M, Zoboli S et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study.  Eur J Nucl Med Mol Imaging. 2003;  30 207-216
  • 18 Virgolini I, Britton K, Buscombe J et al. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial.  Semin Nucl Med. 2002;  32 148-155
  • 19 Baum R P, Söldner J, Schmüching M, Niesen A. Peptidrezeptorvermittelte Radiotherapie (PRRT) neuroendokriner Tumoren Klinischen Indikationen und Erfahrung mit 90Yttrium-markierten Somatostatinanaloga.  Der Onkologe. 2004;  10 1098-1110
  • 20 Kwekkeboom D J, Bakker W H, Kam B L et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate.  Eur J Nucl Med Mol Imaging. 2003;  30 417-422
  • 21 Kwekkeboom D J, Bakker W H, Teunissen J J et al. Treatment with Lu-177-DOTA-Tyr3-octreotate in patients with neuroendocrine tumors: interim results.  Eur J Nucl Med Mol Imaging. 2003;  30 (supplement 2) 231 ,  (abstract)
  • 22 Kwekkeboom D J, Teunissen J J, Bakker W H et al. Radiolabelled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastro entero pancreatic tumors.  J Clin Oncol. 2005;  23 2754-2762
  • 23 Forrer F, Uusijarvi H, Storch D et al. Treatment with 177Lu-DOTATOC of patients with relapse of neuroendocrine tumors after treatment with 90Y-DOTATOC.  J Nucl Med. 2005;  46 1310-1316
  • 24 Krenning E P, Kooij P P, Bakker W H et al. Radiotherapy with a radiolabeled somatostatin analogue [111In-DTPA-d-Phe1]-octreotide. A case history.  Ann N Y Acad Sci. 1994;  733 496-506
  • 25 Konijnenberg W. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with (90)Y, (111)In, or (177)Lu.  J Nucl Med. 2004;  45 1260-1269
  • 26 Scarpignato C, Pelosini I. Somatostatin analogs for cancer treatment and diagnosis: an overview.  Chemotherapy. 2001;  47 Suppl 2 1-29
  • 27 Lamberts S W, van der Lely A J, de Herder W W, Hofland L J. Octreotide.  N Engl J Med. 1996;  334 246-254
  • 28 Reubi J C, Schaer J C, Laissue J A, Waser B. Somatostatin receptors and their subtypes in human tumors and in peritumoral vessels.  Metabolism. 1996;  45 (Suppl 1) 39-41
  • 29 Reubi J C, Schar J C, Waser B et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use.  Eur J Nucl Med. 2000;  27 273-282
  • 30 Bruno J F, Berelowitz M. Somatostatin receptors: orphan that found family and function.  Mol Cell Neurosci. 1993;  4 307-309 ,  (Abstract)
  • 31 Yamada Y, Kagimoto S, Kubota A et al. Cloning, functional expression and pharmacological characterization of a fourth (hSSTR4) and a fifth (hSSTR5) human somatostatin receptor subtype.  Biochem Biophys Res Commun. 1993;  195 844-852
  • 32 Oberg K, Eriksson B. Endocrine tumours of the pancreas.  Best Pract Res Clin Gastroenterol. 2005;  19 753-781
  • 33 Slooter G D, Breeman W A, Marquet R L et al. Anti-proliferative effect of radiolabelled octreotide in a metastases model in rat liver.  Int J Cancer. 1999;  81 767-771
  • 34 Mardirossian G, Wu C, Hnatowich D J. The stability in liver homogenates of indium-111 and yttrium-90 attached to antibody via two popular chelators.  Nucl Med Biol. 1993;  20 65-74
  • 35 Liu S. The role of coordination chemistry in the development of target-specific radiopharmaceuticals.  Chem Soc Rev. 2004;  33 445-461
  • 36 Otte A, Jermann E, Behe M et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy.  Eur J Nucl Med. 1997;  24 792-795
  • 37 Chinol M, Bodei L, Cremonesi M, Paganelli G. Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group.  Semin Nucl Med. 2002;  32 141-147
  • 38 Paganelli G, Bodei L, Handkiewicz Junak D et al. 90Y-DOTA-d-Phe1-Try3-octreotide in therapy of neuroendocrine malignancies.  Biopolymers. 2002;  66 393-398
  • 39 Paganelli G, Zoboli S, Cremonesi M et al. Receptor-mediated radiotherapy with 90Y-DOTA-d-Phe1-Tyr3-octreotide.  Eur J Nucl Med. 2001;  28 426-434
  • 40 Bodei L, Cremonesi M, Grana C et al. Receptor radionuclide therapy with (90)Y-[DOTA](0)-Tyr(3)-octreotide ((90)Y-DOTATOC) in neuroendocrine tumours.  Eur J Nucl Med Mol Imaging. 2004;  31 1038-1046
  • 41 Valkema R, Pauwels S, Kvols L et al. Long-term follow-up of a phase 1 study of peptide receptor radionuclide therapy (PRRT) with (90Y-DOTA0,Tyr3)octreotide in patients with somatostatin receptor positive tumours.  Eur J Nucl Med. 2003;  30 (supplement 2) 232 ,  (Abstract)
  • 42 de Jong M, Valkema R, Jamar F et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings.  Semin Nucl Med. 2002;  32 133-140
  • 43 Smith M C, Liu J, Chen T et al. OctreoTher: ongoing early clinical development of a somatostatin-receptor-targeted radionuclide antineoplastic therapy.  Digestion. 2000;  62 (supplement 1) 69-72
  • 44 Baum R P, Soldner J, Schmucking M, Niesen A. Intravenous and intra-arterial peptide receptor radionuclide therapy (PRRT) using Y-90-DOTA-Tyr3-octreotate (Y-90-DOTA-TATE) in patients with metastatic neuroendocrine tumors.  Eur J Nucl Med. 2004;  31 (supplement 2) 238 ,  (abstract)
  • 45 Valkema R, Pauwels S, Kvols L K et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors.  Semin Nucl Med. 2006;  36 147-156
  • 46 Oberg K, Norheim I, Lundqvist G et al. Cytotoxic treatment in patients with malignant carcinoid tumors. Response to streptozocin - alone or in combination with 5-FU.  Acta Oncol. 1987;  26 429-432
  • 47 Engstrom P F, Lavin P T, Moertel C G. Streptozocin plus fluorouracil versus doxorubicin therapy for metastatic carcinoid tumor.  J Clin Oncol. 1984;  2 1255-1259
  • 48 Moertel C G, Hanley J A. Combination chemotherapy trials in metastatic carcinoid tumor and the malignant carcinoid syndrome.  Cancer Clin Trials. 1979;  2 327-334
  • 49 Cremonesi M, Ferrari M, Zoboli S et al. Biokinetics and dosimetry in patients administered with (111)In-DOTA-Tyr(3)-octreotide: implications for internal radiotherapy with (90)Y-DOTATOC.  Eur J Nucl Med. 1999;  26 877-886
  • 50 Forrer F, Uusijarvi H, Waldherr C et al. A comparison of 293 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours.  Eur J Nucl Med Mol Imaging. 2004;  31 1257-1262
  • 51 De Jong M, Valkema R, Van Gameren A et al. Inhomogeneous localization of radioactivity in the human kidney after injection of [(111)In-DTPA]octreotide.  J Nucl Med. 2004;  45 1168-1171
  • 52 de Jong M, Barone R, Krenning E et al. Megalin is essential for renal proximal tubule reabsorption of (111)In-DTPA-octreotide.  J Nucl Med. 2005;  46 1696-1700
  • 53 Behr T M, Sharkey R M, Sgouros G et al. Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates: improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry.  Cancer. 1997;  80 (12 Suppl) 2591-2610
  • 54 Rolleman E J, Valkema R, de Jong M et al. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine.  Eur J Nucl Med Mol Imaging. 2003;  30 9-15
  • 55 van Eerd J E, Vegt E, Wetzels J F et al. Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats.  J Nucl Med. 2006;  47 528-533
  • 56 Vegt E, Wetzels J F, Russel F G et al. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin.  J Nucl Med. 2006;  47 432-436
  • 57 Forrer F, Rolleman E, Valkema R, Bernard B, Melis M, Bijster M, Krenning E, de Jong M. Amifostine is most promising in protecting renal function during radionuclide therapy with [Lu-177-DOTA0,Tyr3]octreotate.  J Nucl Med. 2006;  47 (Supplement 1) 43 ,  (Abstract)
  • 58 Rolleman E J, Forrer F, Bernard B, Bijster M, Vermeij M, Valkema R, Krenning E P, de Jong M. Amifostine protects rat kidneys in peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate.  Eur J Nucl Med Mol Imaging. 2006;  ,  submitted
  • 59 Moll S, Nickeleit V, Mueller-Brand J et al. A new cause of renal thrombotic microangiopathy: yttrium 90-DOTATOC internal radiotherapy.  Am J Kidney Dis. 2001;  37 847-851
  • 60 Cybulla M, Weiner S M, Otte A. End-stage renal disease after treatment with 90Y-DOTATOC.  Eur J Nucl Med. 2001;  28 1552-1554
  • 61 Stoffel M P, Pollok M, Fries J, Baldamus C A. Radiation nephropathy after radiotherapy in metastatic medullary thyroid carcinoma.  Nephrol Dial Transplant. 2001;  16 1082-1083
  • 62 Barone R, Borson-Chazot F, Valkema R et al. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship.  J Nucl Med. 2005;  46 99S-106S
  • 63 Otte A, Mueller-Brand J, Dellas S et al. Yttrium-90-labelled somatostatin-analogue for cancer treatment.  Lancet. 1998;  351 417-418
  • 64 Emami B, Lyman J, Brown A et al. Tolerance of normal tissue to therapeutic irradiation.  Int J Radiat Oncol Biol Phys. 1991;  21 109-122
  • 65 Valkema R, Pauwels S A, Kvols L K et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0,Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate.  J Nucl Med. 2005;  46 Suppl 1 83-91
  • 66 Pauwels S, Barone R, Walrand S et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labelled somatostatin analogs.  J Nucl Med. 2005;  46 Suppl 1 92-98
  • 67 Bushnell D, Menda Y, Madsen M et al. Assessment of hepatic toxicity from treatment with 90Y-SMT 487 (OctreoTher(™)) in patients with diffuse somatostatin receptor positive liver metastases.  Cancer Biother Radiopharm. 2003;  18 581-588
  • 68 Raut C, Kulke M, Glickman J et al. Carcinoid tumors.  Curr Probl Surg. 2006;  43 383-450
  • 69 Berber E, Flesher N, Siperstein A E. Laparoscopic radiofrequency ablation of neuroendocrine liver metastases.  World J Surg. 2002;  26 985-990
  • 70 Hellman P, Ladjevardi S, Skogseid B et al. Radiofrequency tissue ablation using cooled tip for liver metastases of endocrine tumors.  World J Surg. 2002;  26 1052-1056
  • 71 Modlin I M, Latich I, Kidd M et al. Therapeutic options for gastrointestinal carcinoids.  Clin Gastroenterol Hepatol. 2006;  4 526-547
  • 72 Krenning E P, de Jong M, Kooij P P et al. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy.  Ann Oncol. 1999;  10 Suppl 2 23-29
  • 73 Toth-Fejel S, Pommier R F. Relationships among delay of diagnosis, extent of disease, and survival in patients with abdominal carcinoid tumors.  Am J Surg. 2004;  187 575-579
  • 74 Teunissen J J, Kwekkeboom D J, Krenning E P. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0,Tyr3]octreotate.  J Clin Oncol. 2004;  22 2724-2729
  • 75 Ginj M, Chen J, Walter M A et al. Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy.  Clin Cancer Res. 2005;  11 1136-1145
  • 76 Breeman W A, De Jong M, Visser T J et al. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities.  Eur J Nucl Med Mol Imaging. 2003;  30 917-920
  • 77 Froidevaux S, Hintermann E, Torok M et al. Differential regulation of somatostatin receptor type 2 (sst2) expression in AR4-2J tumor cells implanted into mice during octreotide treatment.  Cancer Res. 1999;  59 3652-3657
  • 78 de Jong M, Breeman W AP, Valkema R et al. Combination Radionuclide Therapy Using 177Lu- and 90Y-Labeled Somatostatin Analogs.  J Nucl Med. 2005;  46 Suppl 1 13-17
  • 79 Uusijarvi H, Bernhardt P, Rosch F et al. Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production.  J Nucl Med. 2006;  47 807-814
  • 80 Norenberg J P, Krenning B J, Konings I R et al. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model.  Clin Cancer Res. 2006;  12 897-903
  • 81 van Putten J W, Price A, van der Leest A H et al. A phase I study of gemcitabine with concurrent radiotherapy in stage III, locally advanced non-small cell lung cancer.  Clin Cancer Res. 2003;  9 2472-2477
  • 82 Joiner M C, Marples B, Lambin P et al. Low-dose hypersensitivity: current status and possible mechanisms.  Int J Radiat Oncol Biol Phys. 2001;  49 379-389
  • 83 Collis S J, Schwaninger J M, Ntambi A J et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage.  J Biol Chem. 2004;  279 49624-49632
  • 84 Reubi J C, Macke H R, Krenning E P. Candidates for peptide receptor radiotherapy today and in the future.  J Nucl Med. 2005;  46 Suppl 1 67-75
  • 85 Smith C J, Volkert W A, Hoffman T J. Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update.  Nucl Med Biol. 2003;  30 861-868
  • 86 Behe M, Behr T M. Cholecystokinin-B (CCK-B) / gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies.  Biopolymers. 2002;  66 399-418

Dr. med. Dr.phil. F. Forrer

Nuklearmedizin · Universitätsspital Basel

Petersgraben 4

CH-4031 Basel

Schweiz

Telefon: +41 / 61 / 2 65 47 04

Fax: +41 / 61 / 2 65 49 25

eMail: fforrer@uhbs.ch

    >