Subscribe to RSS
DOI: 10.1055/s-2008-1027188
© Georg Thieme Verlag KG Stuttgart · New York
Does Routine Transcranial Duplex Ultrasound Heat Up the Patient Brain?
Hirnerwärmung durch transkraniellen Routine Duplex-Ultraschall?Publication History
received: 9.10.2007
accepted: 24.12.2007
Publication Date:
21 May 2008 (online)

Zusammenfassung
Ziel: Der Anstieg der Hirngewebetemperatur bei transkraniellen Ultraschallanwendungen (US) ist als mögliche Gefahr für den Patienten beschrieben worden. Hierfür liegen jedoch keine Studien am Menschen, sondern lediglich an verschiedenen Modellen vor. Der Effekt des trankraniellen Duplex-Ultraschalls bei der Routineuntersuchung auf die intraventrikuläre Temperatur bei Patienten wurde untersucht. Material und Methoden: Patienten, die eine intrakranielle Druck- und Temperatursonde implantiert hatten und US untersucht wurden, werden eingeschlossen. In einer Untersuchungsserie (B-mode-, B- und Color-mode-, B- und Color-mode-plus-Doppler; jeweils für drei Minuten) wird der intrakranielle Thermistor der Messsonde fokussiert, während die intraventrikuläre Temperatur und die Körpertemperatur kontinuierlich (über Blasenkatheter oder rektal) gemessen werden. Die Temperaturänderungen werden analysiert. Ergebnisse: Bei 14 Patienten wurden 31 US durchgeführt. Für die Auswertung wurden 26 US bei 9 Patienten, bei denen die Temperatursonde dargestellt werden konnte, berücksichtigt. Die initialen Körpertemperaturen lagen zwischen 35,1 bis 38,7 °C. Es wurden keine signifikanten Temperaturänderungen während der ersten (B-mode), zweiten (B- und color) und dritten (b- und color plus Doppler) US gesehen. Der T-Test zeigte eine konstante Temperatur während der US (zweiseitige Signifikanz: 1,000; 1,000; 0,0731). Schlussfolgerung: Der transkranielle Routine-US erhöht die Hirntemperatur der Patienten nicht.
Abstract
Purpose: The effect of transcranial duplex ultrasound (US) on the intraventricular temperature in patients was analyzed. Temperature increases during examination have been identified as a potential risk factor but only data from model studies is currently available. Materials and Methods: Patients who had an intracranial pressure/temperature transducer implanted and underwent US assessment were included. In an examination series (B-mode, combined B- and color mode, combined B- and color mode plus Doppler, 3 min for each mode), the intracranial thermodilution thermistor was focused while intraventricular temperature and body temperature (bladder catheter or rectal probe) were recorded continuously and temperature changes were analyzed. Results: Thirty-one US examinations were performed in 14 patients. Twenty-six examinations in 9 patients in which the intracranial temperature probe was depicted were included. Initial patient temperatures ranged from 35.1dgC to 38.7dgC. No significant increase or decrease in intracranial temperature was seen after the first (B-mode), second (B- and color mode) and third (B- and color mode plus Doppler) duplex US examination. T-test for paired samples showed a constant temperature throughout US examination (two-sided significance: 1.000, 1.000, 0.731). Conclusion: Routine transcranial duplex ultrasound does not increase the intracranial temperature in patients.
Key words
ultrasonography - doppler - transcranial - safety
References
- 1
Barnett S B, Maulik D.
Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications.
J Matern Fetal Med.
2001;
10
75-84
Reference Ris Wihthout Link
- 2
Whittingham T A.
WFUMB Safety Symposium on Echo-Contrast Agents: exposure from diagnostic ultrasound
equipment relating to cavitation risk.
Ultrasound Med Biol.
2007;
33
214-223
Reference Ris Wihthout Link
- 3
Barnett S B.
Intracranial temperature elevation from diagnostic ultrasound.
Ultrasound Med Biol.
2001;
27
883-888
Reference Ris Wihthout Link
- 4
Whittingham T A.
Estimated fetal cerebral ultrasound exposures from clinical examinations.
Ultrasound Med Biol.
2001;
27
877-82
Reference Ris Wihthout Link
- 5
Ziskin M C, Barnett S B.
Ultrasound and the developing central nervous system.
Ultrasound Med Biol.
2001;
27
875-6
Reference Ris Wihthout Link
- 6
Barnett S B, ter Haar G R, Ziskin M C. et al .
Current status of research on biophysical effects of ultrasound.
Ultrasound Med Biol.
1994;
20
205-218
Reference Ris Wihthout Link
- 7
Connor C W, Hynynen K.
Patterns of thermal deposition in the skull during transcranial focused ultrasound
surgery.
IEEE Trans Biomed Eng.
2004;
51
1693-1706
Reference Ris Wihthout Link
- 8
Wu J, Cubberley F, Gormley G. et al .
Temperature rise generated by diagnostic ultrasound in a transcranial phantom.
Ultrasound Med Biol.
1995;
21
561-568
Reference Ris Wihthout Link
- 9
Sekoranja L, Loulidi J, Yilmaz H. et al .
Intravenous versus combined (intravenous and intra-arterial) thrombolysis in acute
ischemic stroke: a transcranial color-coded duplex sonography – guided pilot study.
Stroke.
2006;
37
1805-1809
Reference Ris Wihthout Link
- 10
Schneider F, Gerriets T, Walberer M. et al .
Brain edema and intracerebral necrosis caused by transcranial low-frequency 20-kHz
ultrasound: a safety study in rats.
Stroke.
2006;
37
1301-1306
Reference Ris Wihthout Link
- 11
Molina C A.
Monitoring and imaging the clot during systemic thrombolysis in stroke patients.
Expert Rev Cardiovasc Ther.
2007;
5
91-98
Reference Ris Wihthout Link
- 12
Martini S R, Hill M D, Alexandrov A V. et al .
Outcome in hyperglycemic stroke with ultrasound-augmented thrombolytic therapy.
Neurology.
2006;
67
700-702
Reference Ris Wihthout Link
- 13
Molina C A, Ribo M, Rubiera M. et al .
Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound
monitoring in stroke patients treated with intravenous tissue plasminogen activator.
Stroke.
2006;
37
425-429
Reference Ris Wihthout Link
- 14
Eggers J.
Acute stroke: therapeutic transcranial color duplex sonography.
Front Neurol Neurosci.
2006;
21
162-170
Reference Ris Wihthout Link
- 15
Demchuk A M, Saqqur M, Alexandrov A V.
Transcranial Doppler in acute stroke.
Neuroimaging Clin N Am.
2005;
15
473-480, ix
Reference Ris Wihthout Link
- 16
Sakharov D V, Hekkenberg R T, Rijken D C.
Acceleration of fibrinolysis by high-frequency ultrasound: the contribution of acoustic
streaming and temperature rise.
Thromb Res.
2000;
100
333-340
Reference Ris Wihthout Link
- 17
Alexandrov A V, Molina C A, Grotta J C. et al .
Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke.
N Engl J Med.
2004;
351
2170-2178
Reference Ris Wihthout Link
- 18
Eggers J, Seidel G, Koch B. et al .
Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA Ultrasound-enhanced
systemic thrombolysis for acute ischemic stroke. Acceleration of fibrinolysis by high-frequency
ultrasound: the contribution of acoustic streaming and temperature rise.
Neurology.
2005;
64
1052-1054
Reference Ris Wihthout Link
- 19
Barnett S B.
Current status of safety of diagnostic ultrasound.
Hosp Med.
2001;
62
726-727
Reference Ris Wihthout Link
- 20
Nakagawa K, Ishibashi T, Matsushima M. et al .
Does long-term continuous transcranial Doppler monitoring require a pause for safer
use?.
Cerebrovasc Dis.
2007;
24
27-34
Reference Ris Wihthout Link
- 21
Rott H.
Clinical safety statement for diagnostic ultrasound. European Committee for Medical
Ultrasound Safety, Tours, France, March 1998.
Eur J Ultrasound.
1998;
8
67-68
Reference Ris Wihthout Link
- 22
Krejza J, Weigele J B, Alokaili R. et al .
Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA.
Neurology.
2006;
66
154-155; author reply 154 – 155
Reference Ris Wihthout Link
- 23
WFUMB Symposium on Safety and Standardisation in Medical Ultrasound .
Issues and Recommendations Regarding Thermal Mechanisms for Biological Effects of
Ultrasound. Hornbaek, Denmark, 30 August-1 September 1991.
Ultrasound Med Biol.
1992;
18
731-810
Reference Ris Wihthout Link
- 24
Duggan P M, Murcott M F, McPhee A J. et al .
The influence of variations in blood flow on pulsed doppler ultrasonic heating of
the cerebral cortex of the neonatal pig.
Ultrasound Med Biol.
2000;
26
647-654
Reference Ris Wihthout Link
- 25
Horder M M, Barnett S B, Vella G J. et al .
Ultrasound-induced temperature increase in the guinea-pig fetal brain in vitro.
Ultrasound Med Biol.
1998;
24
697-704
Reference Ris Wihthout Link
- 26
Horder M M, Barnett S B, Vella G J. et al .
Ultrasound-induced temperature increase in guinea-pig fetal brain in utero: third-trimester
gestation.
Ultrasound Med Biol.
1998;
24
1501-1510
Reference Ris Wihthout Link
- 27
Horder M M, Barnett S B, Vella G J. et al .
In vivo heating of the guinea-pig fetal brain by pulsed ultrasound and estimates of
thermal index.
Ultrasound Med Biol.
1998;
24
1467-1474
Reference Ris Wihthout Link
- 28
Horder M M, Barnett S B, Vella G J. et al .
Effects of pulsed ultrasound on sphenoid bone temperature and the heart rate in guinea-pig
foetuses.
Early Hum Dev.
1998;
52
221-233
Reference Ris Wihthout Link
- 29
Mariak Z, Krejza J, Swiercz M. et al .
Human brain temperature in vivo: lack of heating during color transcranial Doppler
ultrasonography.
J Neuroimaging.
2001;
11
308-312
Reference Ris Wihthout Link
- 30
Marshall I, Karaszewski B, Wardlaw J M. et al .
Measurement of regional brain temperature using proton spectroscopic imaging: validation
and application to acute ischemic stroke.
Magn Reson Imaging.
2006;
24
699-706
Reference Ris Wihthout Link
- 31
Karaszewski B, Wardlaw J M, Marshall I. et al .
Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic
stroke.
Ann Neurol.
2006;
60
438-446
Reference Ris Wihthout Link
- 32
Senneville B D, Mougenot de C, Quesson B. et al .
MR thermometry for monitoring tumor ablation.
Eur Radiol.
2007;
17
2401-2410
Reference Ris Wihthout Link
- 33
Vimeux F C, De Zwart J A, Palussiere J. et al .
Real-time control of focused ultrasound heating based on rapid MR thermometry.
Invest Radiol.
1999;
34
190-193
Reference Ris Wihthout Link
- 34
Pernot M, Aubry J F, Tanter M. et al .
High power transcranial beam steering for ultrasonic brain therapy.
Phys Med Biol.
2003;
48
2577-2589
Reference Ris Wihthout Link
- 35
Moonen C T.
Spatio-temporal control of gene expression and cancer treatment using magnetic resonance
imaging-guided focused ultrasound.
Clin Cancer Res.
2007;
13
3482-3489
Reference Ris Wihthout Link
- 36
Hynynen K.
Focused ultrasound for blood-brain disruption and delivery of therapeutic molecules
into the brain.
Expert Opin Drug Deliv.
2007;
4
27-35
Reference Ris Wihthout Link
Dr. Hans-Georg Schlosser
Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Campus Virchow Klinikum
(CVK)
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/30/4 50 56 07 34
Fax: ++ 49/30/4 50 56 09 19
Email: hans-georg.schlosser@charite.de