Subscribe to RSS
DOI: 10.1055/s-2008-1027290
© Georg Thieme Verlag KG Stuttgart · New York
Experimentelle Kleintier-MRT: Klinische MRT-Systeme als Schnittstelle zur biomedizinischen Grundlagenforschung
Small Animal MRI: Clinical MRI as an Interface to Basic Biomedical ResearchPublication History
eingereicht: 6.11.2007
angenommen: 21.2.2008
Publication Date:
26 May 2008 (online)

Zusammenfassung
In den biomedizinischen Grundlagenfächern ist die Nachfrage nach hochaufgelöster Kleintier-MRT stetig steigend. Dedizierte Kleintiersysteme, die mit B 0-Feldern üblicherweise im Bereich von 4,7 T–7 T und oftmals auch darüber arbeiten, genügen selbst den höchsten Ansprüchen an die Bildqualität. Doch auch der Einsatz effizienter, hochauflösender RF-Spulen in der klinischen MRT bis zu 3.0 T ermöglicht detaillierte und kontrastreiche morphologische Darstellungen im Submillimeterbereich. So wird über die erfolgreiche Anwendung klinischer MRT-Geräte für Untersuchungen am Kleintier in der biomedizinischen Literatur vielfach berichtet. Am häufigsten sind Berichte über die Verwendung kleiner klinischer Spulen. Oftmals finden jedoch auch speziell entwickelte, volumenoptimierte RF-Spulen experimentelle Anwendung. Sehr anspruchsvolle Fragestellungen können mithilfe zusätzlicher Gradientenspulen in einem klinischen Scanner bearbeitet werden. Für die Reduktion von Bewegungsartefakten stehen spezielle kleintierangepasste EKG- und Atemsteuerungsgeräte zur Verfügung. Die Vorteile der klinischen MRT liegen in ihrer weiten Verbreitung, im geringeren finanziellen Aufwand bei guter Leistungsfähigkeit und auch in der translationalen Verwertbarkeit der Bildergebnisse.
Abstract
The demand for highly resolved small animal MRI for the purpose of biomedical research has increased constantly. Dedicated small animal MRI scanners working at ultra high field strengths from 4.7 to 7.0 T and even above are MRI at its best. However, using high resolution RF coils in clinical scanners up to 3.0 T, small animal MRI can achieve highly resolved images showing excellent tissue contrast. In fact, in abundant experimental studies, clinical MRI is used for small animal imaging. Mostly clinical RF coils in the single-loop design are applied. In addition, custom-built RF coils and even gradient inserts are used in a clinical scanner. For the reduction of moving artifacts, special MRI-compatible animal ECG und respiration devices are available. In conclusion, clinical devices offer broad availability, are less expense in combination with good imaging performance and provide a translational nature of imaging results.
Key words
MR imaging - equipment - molecular imaging - technical aspects
Literatur
- 1
Bottomley P A.
In vivo tumor discrimination in a rat by proton nuclear magnetic resonance imaging.
Cancer Res.
1979;
39
468-470
MissingFormLabel
- 2
Hansen G, Crooks L E, Davis P. et al .
In vivo imaging of the rat anatomy with nuclear magnetic resonance.
Radiology.
1980;
136
695-700
MissingFormLabel
- 3
Service R F.
Biological imaging. Scanners get a fix on lab animals.
Science.
1999;
286
2261-2263
MissingFormLabel
- 4
Lewis J S, Achilefu S, Garbow J R. et al .
Small animal imaging. Current technology and perspectives for oncological imaging.
Eur J Cancer.
2002;
38
2173-2188
MissingFormLabel
- 5
Grimm J, Wunder A.
Molekulare Bildgebung: Stand der Forschung.
Fortschr Röntgenstr.
2005;
177
326-337
MissingFormLabel
- 6
Behe M, Keil B, Alfke H. et al .
Kombinierte radiologische und nuklearmedizinische Bildgebung in Tierexperimenten:
Ein Überblick über die aktuellen Möglichkeiten.
Fortschr Röntgenstr.
2007;
179
796-803
MissingFormLabel
- 7
Stelter L, Amthauer H, Rexin A. et al .
An Orthotopic Model of Pancreatic Somatostatin Receptor (SSTR)-Positive Tumors Allows
Bimodal Imaging Studies Using 3T MRI and Animal PET-Based Molecular Imaging of SSTR
Expression.
Neuroendocrinology.
2007;
Epub ahead of print
MissingFormLabel
- 8
Gemeinhardt O, Ludemann L, Prochnow D. et al .
Differentiation of prostate cancer from normal prostate tissue in an animal model:
conventional MRI and dynamic contrast-enhanced MRI.
Fortschr Röntgenstr.
2005;
177
935-939
MissingFormLabel
- 9
Luciani A, Parouchev A, Smirnov P. et al .
In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system-initial
experience in mice.
Eur Radiol.
2007;
18
59-69
MissingFormLabel
- 10
Schäfer R, Wiskirchen J, Guo. et al .
Aptamer-Based Isolation and Subsequent Imaging of Mesenchymal Stem Cells in Ischemic
Myocard by Magnetic Resonance Imaging.
Fortschr Röntgenstr.
2007;
179
1009-1015
MissingFormLabel
- 11
Shapiro E M, Gonzalez-Perez O, Garcia-Verdugo M. et al .
Magnetic resonance imaging of the migration of neuronal precursors generated in the
adult rodent brain.
Neuroimage.
2006;
32
1150-1157
MissingFormLabel
- 12
Torrente Y, Belicchi M, Marchesi C. et al .
Autologous transplantation of muscle-derived CD 133 + stem cells in Duchenne muscle
patients.
Cell Transplant.
2007;
16
563-577
MissingFormLabel
- 13
Pomper M G, Lee J S.
Small animal imaging in drug development.
Curr Pharm Des.
2005;
11
3247-3272
MissingFormLabel
- 14
Muruganandham M, Lupu M, Dyke J P. et al .
Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor
agent RO 0 281 501 by dynamic contrast-enhanced MRI at 1.5 T.
Mol Cancer Ther.
2006;
5
1950-1957
MissingFormLabel
- 15
Simon G, Drup-Link H, Vopelius-Feldt von J. et al .
MRT der Arthritis mit dem USPIO SH U 555 C: Optimierung des T 1-Enhancements.
Fortschr Röntgenstr.
2006;
178
200-206
MissingFormLabel
- 16
Acara M A, Mazurchuk R J, Nickerson P A. et al .
Magnetic resonance imaging and histopathology of hydronephrosis in the rat.
Magn Reson Imaging.
1991;
9
89-92
MissingFormLabel
- 17
Fiel R J, Alletto J J, Severin C M. et al .
MR imaging of normal rat brain at 0.35 T and correlated histology.
J Magn Reson Imaging.
1991;
1
651-656
MissingFormLabel
- 18
Button T M, Fiel R J, Goldrosen M. et al .
Small animal MRI at 0.35 Tesla: growth and morphology of intra-organ murine tumors.
Magn Reson Imaging.
1990;
8
505-509
MissingFormLabel
- 19
Oweida A J, Dunn E A, Karlik S J. et al .
Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune
encephalomyelitis and the contribution to signal loss in fast imaging employing steady
state acquisition (FIESTA) images.
J Magn Reson Imaging.
2007;
26
144-151
MissingFormLabel
- 20
Mandeville J B, Jenkins B G, Kosofsky B E. et al .
Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat
brain.
Magn Reson Med.
2001;
45
443-447
MissingFormLabel
- 21
Stroh A, Faber C, Neuberger T. et al .
In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain
using high-field (17.6 T) magnetic resonance imaging.
Neuroimage.
2005;
24
635-645
MissingFormLabel
- 22
Edelstein W A, Glover G H, Hardy C J. et al .
The intrinsic signal-to-noise ratio in NMR imaging.
Magn Reson Med.
1986;
3
604-618
MissingFormLabel
- 23
Barker P B, Hearshen D O, Boska M D.
Single-voxel proton MRS of the human brain at 1.5T and 3.0T.
Magn Reson Med.
2001;
45
765-769
MissingFormLabel
- 24
Schmidt G P, Wintersperger B, Graser A. et al .
High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla:
a comparative study.
Invest Radiol.
2007;
42
449-459
MissingFormLabel
- 25
Beuf O, Jaillon F, Saint-Jalmes H.
Small-animal MRI: signal-to-noise ratio comparison at 7 and 1.5 T with multiple-animal
acquisition strategies.
MAGMA.
2006;
19
202-208
MissingFormLabel
- 26
Schindera S T, Merkle E M, Dale B M. et al .
Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise
ratio?.
Acad Radiol.
2006;
13
1236-1243
MissingFormLabel
- 27
Szeglowski S D, Hornak J P.
Asymmetric single-turn solenoid for MRI of the wrist.
Magn Reson Med.
1993;
30
750-753
MissingFormLabel
- 28
Turner R.
Gradient coil design: a review of methods.
Magn Reson Imaging.
1993;
11
903-920
MissingFormLabel
- 29
Robson M D, Gore J C, Constable R T.
Measurement of the point spread function in MRI using constant time imaging.
Magn Reson Med.
1997;
38
733-740
MissingFormLabel
- 30
Rossmann K.
Point spread-function, line spread-function, and modulation transfer function. Tools
for the study of imaging systems.
Radiology.
1969;
93
257-272
MissingFormLabel
- 31
Bernstein M A, Huston III J , Ward H A.
Imaging artifacts at 3.0T.
J Magn Reson Imaging.
2006;
24
735-746
MissingFormLabel
- 32
Schmidt G P, Wintersperger B, Graser A. et al .
High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla:
a comparative study.
Invest Radiol.
2007;
42
449-459
MissingFormLabel
- 33
Brockmann M A, Ulmer S, Leppert J. et al .
Analysis of mouse brain using a clinical 1.5 T scanner and a standard small loop surface
coil.
Brain Res.
2006;
1068
138-142
MissingFormLabel
- 34
Lussanet Q G, Beets-Tan R G, Backes W H. et al .
Dynamic contrast-enhanced magnetic resonance imaging at 1.5 Tesla with gadopentetate
dimeglumine to assess the angiostatic effects of anginex in mice.
Eur J Cancer.
2004;
40
1262-1268
MissingFormLabel
- 35
Wolf R F, Lam K H, Mooyaart E L. et al .
Magnetic resonance imaging using a clinical whole body system: an introduction to
a useful technique in small animal experiments.
Lab Anim.
1992;
26
222-227
MissingFormLabel
- 36
Weissleder de R, Moore A, Mahmood U. et al .
In vivo magnetic resonance imaging of transgene expression.
Nat Med.
2000;
6
351-355
MissingFormLabel
- 37
Xu S, Gade T P, Matei C. et al .
In vivo multiple-mouse imaging at 1.5 T.
Magn Reson Med.
2003;
49
551-557
MissingFormLabel
- 38
Moore A, Marecos E, Bogdanov A. et al .
Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in
a rodent model.
Radiology.
2000;
214
568-574
MissingFormLabel
- 39
Smirnov P, Gazeau F, Lewin M. et al .
In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5-T
clinical MRI system.
Magn Reson Med.
2004;
52
73-79
MissingFormLabel
- 40
Schild H.
Clinical highfield MR.
Fortschr Röntgenstr.
2005;
177
621-631
MissingFormLabel
- 41
Ittrich H, Lange C, Tögel F. et al .
In Vivo Magnetic Resonance Imaging of Iron Oxide Labeled, Arterially-Injected Mesenchymal
Stem Cells in Kidneys of Rats With Acute Ischemic Kidney Injury: Detection and Monitoring
at 3T.
JMRI.
2007;
25
1179-1191
MissingFormLabel
- 42
Jordan A, Scholz R, Maier-Hauff K. et al .
The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma.
J Neurooncol.
2006;
78
7-14
MissingFormLabel
- 43
Bock N A, Konyer N B, Henkelman R M.
Multiple-mouse MRI.
MRM.
2003;
49
158-167
MissingFormLabel
- 44
Thunemann A F, Schutt D, Kaufner L. et al .
Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene
oxide)-block-poly(glutamic acid).
Langmuir.
2006;
22
2351-2357
MissingFormLabel
- 45
Cook L L, Foster P J, Karlik S J.
Pathology-guided MR analysis of acute and chronic experimental allergic encephalomyelitis
spinal cord lesions at 1.5T.
J Magn Reson Imaging.
2005;
22
180-188
MissingFormLabel
- 46
Fink C, Kiessling F, Bock M. et al .
High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization
of intratumoral vasculature.
J Magn Reson Imaging.
2003;
18
59-65
MissingFormLabel
- 47
Heyn C, Ronald J A, Ramadan S S. et al .
In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast
cancer metastasis to the brain.
Magn Reson Med.
2006;
56
1001-1010
MissingFormLabel
- 48
Heyn C, Ronald J A, MacKenzie L T. et al .
In vivo magnetic resonance imaging of single cells in mouse brain with optical validation.
Magn Reson Med.
2006;
55
23-29
MissingFormLabel
- 49
Dunn E A, Weaver L C, Dekaban G A. et al .
Cellular imaging of inflammation after experimental spinal cord injury.
Mol Imaging.
2005;
4
53-62
MissingFormLabel
- 50
Oweida A J, Dunn E A, Foster P J.
Cellular imaging at 1.5 T: detecting cells in neuroinflammation using active labeling
with superparamagnetic iron oxide.
Mol Imaging.
2004;
3
85-95
MissingFormLabel
- 51
Mayer D, Zahr N M, Adalsteinsson E. et al .
In vivo fiber tracking in the rat brain on a clinical 3T MRI system using a high strength
insert gradient coil.
Neuroimage.
2007;
35
1077-1085
MissingFormLabel
- 52
Brau A C, Hedlund L W, Johnson G A.
Cine magnetic resonance microscopy of the rat heart using cardiorespiratory-synchronous
projection reconstruction.
J Magn Reson Imaging.
2004;
20
31-38
MissingFormLabel
- 53
Franco F, Dubois S K, Peshock R M. et al .
Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model
of cardiac hypertrophy.
Am J Physiol.
1998;
274
H679-H683
MissingFormLabel
- 54
Jones J R, Mata J F, Yang Z. et al .
Left ventricular remodeling subsequent to reperfused myocardial infarction: evaluation
of a rat model using cardiac magnetic resonance imaging.
J Cardiovasc Magn Reson.
2002;
4
317-326
MissingFormLabel
- 55
Oshinski J N, Yang Z, Jones J R. et al .
Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine
infarct size accurately with magnetic resonance imaging.
Circulation.
2001;
104
2838-2842
MissingFormLabel
- 56
Ivancevic M K, Daire J L, Hyacinthe J N. et al .
High-resolution complementary spatial modulation of magnetization (CSPAMM) rat heart
tagging on a 1.5 Tesla Clinical Magnetic Resonance System: a preliminary feasibility
study.
Invest Radiol.
2007;
42
204-210
MissingFormLabel
- 57
Holoday D A, Fiserova-Bergerova V, Latto I P. et al .
Resistance of isoflurane to biotransformation in man.
Anesthesiology.
1975;
43
325-332
MissingFormLabel
- 58
Fueger B J, Czernin J, Hildebrandt I. et al .
Impact of animal handling on the results of F-18 FDG PET studies in mice.
J Nucl Med.
2006;
47
999-1006
MissingFormLabel
Dr. Jens Georg Pinkernelle
Institut für Radiologie, Charité Universitätsmedizin Berlin
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/4 50/65 71 35
Fax: ++ 49/4 50/55 79 07
Email: jens.pinkernelle@charite.de