Subscribe to RSS
DOI: 10.1055/s-2008-1027887
© Georg Thieme Verlag KG Stuttgart · New York
Spektroskopische Bildgebung der menschlichen Leber mittels 3D-CSI: Etablierung und Anwendung bei Patienten mit metastasiertem Aderhautmelanom
Spectroscopic Imaging of the Human Liver using 3D CSI: Optimization and Application in Patients with Metastatic Uvea MelanomaPublication History
eingereicht: 6.12.2007
angenommen: 24.9.2008
Publication Date:
11 December 2008 (online)

Zusammenfassung
Ziel: Die 31P-MR-Spektroskopie (MRS) ermöglicht die nicht invasive Erfassung metabolischer Veränderungen in Tumoren. Aufgrund physikalischer aber auch technischer Limitationen werden zumeist nur einzelne und große Untersuchungsvolumina untersucht. Die Möglichkeiten einer räumlich hoch aufgelösten 31P-MRS zur Charakterisierung von Stoffwechselveränderungen in Lebermetastasen sowie im benachbarten gesunden Lebergewebe wurde bei Patienten mit Uveamelanom untersucht. Material und Methoden: Anhand von Probandenuntersuchungen (n = 19) wurde die 3D-Chemical-Shift-Imaging-Technik (3D-CSI) der menschlichen Leber optimiert, (Voxelgröße 25 cm3). Anschließend wurden Patienten (n = 8) mit Lebermetastasen untersucht. Bei allen Patienten lag zeitgleich eine Schnittbildgebung vor. Ergebnisse: Im Vergleich zu Gesunden zeigten die Patienten in Lebermetastasen ein signifikant erhöhtes PME/PDE-Verhältnis (0,56 ± 0,30 vs. 0,39 ± 0,21; p < 0,05). Dies war verbunden mit einer tendenziellen Zunahme des PME/beta ATP- (2,07 ± 1,83 vs. 1,02 ± 0,45; p = 0,12) sowie Abnahme des Pi/PME-Verhältnisses (0,57 ± 0,29 vs. 1,06 ± 0,58; p = 0,06). Patienten mit Metastasen ≥ 5 cm zeigten signifikant höhere PME/PDE-Verhältnisse (0,68 ± 0,17 vs. 0,45 ± 0,03; p < 0,05). Den Metastasen benachbartes Lebergewebe zeigte im Vergleich zu Gesunden keine signifikanten Veränderungen. Schlussfolgerung: Die 3D-CSI-Technik erlaubt die simultane Erfassung metabolischer Veränderungen im erkrankten wie im gesunden Lebergewebe. Metastasen weisen signifikante metabolische Änderungen auf. Die 31P-MRS eröffnet somit neue Möglichkeiten zum Therapiemonitoring.
Abstract
Purpose: 31P MR spectroscopy (MRS) allows the noninvasive assessment of metabolic alterations in tumors. Due to physical as well as technical limitations, mostly large and single voxels are used. We used a spatially resolved 31P MRS technique to characterize metabolic abnormalities inside and adjacent to liver metastases of patients with uvea melanoma. Materials and Methods: Optimization of 3D chemical shift imaging (3D CSI) was performed in healthy volunteers (n = 19; voxel size 25 ml). Patients (n = 8) with liver metastases were then examined. Cross sectional imaging was available for all patients. Results: Compared to healthy volunteers, the PME/PDE ratios of patients with liver metastasis were significantly higher (0.56 ± 0.30 vs. 0.39 ± 0.21; p < 0.05). A trend towards increased PME/beta ATP ratios (2.07 ± 1.83 vs. 1.02 ± 0.45; p = 0.12) and decreased Pi/PME ratios (0.57 ± 0.29 vs. 1.06 ± 0.58; p = 0.06) was also observed. Patients with metastases ≥ 5 cm showed significantly higher PME/PDE ratios (0.68 ± 0.17 vs. 0.45 ± 0.03; p < 0.05). Liver parenchyma adjacent to metastases did not show any significant changes compared to non-diseased tissue. Conclusion: 3D CSI allows the simultaneous analysis of metabolic alterations in diseased as well as in healthy human liver. Metastases show significant metabolic alterations. Thus, 31P MRS opens new possibilities for therapeutic monitoring.
Key words
abdomen - molecular analysis - tissue characterization - treatment planning - MR spectroscopy - liver metastasis
Literatur
- 1
Pawlik T M, Choti M A.
Shifting from clinical to biologic indicators of prognosis after resection of hepatic
colorectal metastases.
Curr Oncol Rep.
2007;
9
193-201
MissingFormLabel
- 2
Rivoire M, Kodjikian L, Baldo S. et al .
Treatment of liver metastases from uveal melanoma.
Annals of surgical oncology.
2005;
12
422-428
MissingFormLabel
- 3
Eskelin S, Pyrhonen S, Hahka-Kemppinen M. et al .
A prognostic model and staging for metastatic uveal melanoma.
Cancer.
2003;
97
465-475
MissingFormLabel
- 4
Laarhoven H W, Geus-Oei de L F, Wiering van B. et al .
Gadopentetate dimeglumine and FDG uptake in liver metastases of colorectal carcinoma
as determined with MR imaging and PET.
Radiology.
2005;
237
181-188
MissingFormLabel
- 5
Ludescher B, Machann J, Graf H. et al .
Beobachtung und Kontrolle von Fixiervorgängen in Leberpräparaten mittels MRT und MRS.
Fortschr Röntgenstr.
2004;
176
597-604
MissingFormLabel
- 6
Fischbach F, Thormann M, Ricke J.
1 H-Magnetresonanzspektroskopie (MRS) der Leber und von Lebermalignomen bei 3.0 Tesla.
Der Radiologe.
2004;
44
1192-1196
MissingFormLabel
- 7
Bell J D, Bhakoo K K.
Metabolic changes underlying 31P MR spectral alterations in human hepatic tumours.
NMR Biomed.
1998;
11
354-359
MissingFormLabel
- 8
Meyerhoff D J, Karczmar G S, Valone F. et al .
Hepatic cancers and their response to chemoembolization therapy. Quantitative image-guided
31P magnetic resonance spectroscopy.
Invest Radiol.
1992;
27
456-464
MissingFormLabel
- 9
Heindel W, Bunke J, Schreier G. et al .
Lokalisierte 31P-NMR-Spektroskopie mit ISIS und Oberflächenspule: Methodik und erste
Anwendungen bei der Untersuchung von Leber, Transplantatniere und Mediastinum.
Fortschr Röntgenstr.
1990;
152
277-282
MissingFormLabel
- 10
Heindel W, du Mesnil de Rochemont R, Kugel H. et al .
31P-MR-Spektroskopie der menschlichen Leber – spektrale Hinweise auf eine Lymphominfiltration.
Fortschr Röntgenstr.
1997;
167
62-70
MissingFormLabel
- 11
Morimoto T, Obata T, Ohno T. et al .
Phosphorous-31 magnetic resonance spectroscopy of cervical cancer using transvaginal
surface coil.
Magn Reson Med Sci.
2005;
4
197-201
MissingFormLabel
- 12
Kettelhack C, Wickede M, Vogl T. et al .
31Phosphorus-magnetic resonance spectroscopy to assess histologic tumor response noninvasively
after isolated limb perfusion for soft tissue tumors.
Cancer.
2002;
94
1557-1564
MissingFormLabel
- 13
Griffiths J R, Cady E, Edwards R H. et al .
31P-NMR studies of a human tumour in situ.
Lancet.
1983;
1
1435-1436
MissingFormLabel
- 14
Brinkmann G, Melchert U H.
A study of T 1-weighted 31phosphorus MR-spectroscopy from patients with focal and
diffuse liver disease.
Magn Reson Imaging.
1992;
10
949-956
MissingFormLabel
- 15
Brown T R, Kincaid B M, Ugurbil K.
NMR chemical shift imaging in three dimensions.
Proc Natl Acad Sci U S A.
1982;
79
3523-3526
MissingFormLabel
- 16
Beer M, Machann W, Sandstede J. et al .
Energetic differences between viable and non-viable myocardium in patients with recent
myocardial infarction are not an effect of differences in wall thinning- a multivoxel
(31)P-MR-spectroscopy and MRI study.
Eur Radiol.
2007;
17
1275-1283
MissingFormLabel
- 17
Beer M, Buchner S, Wirbelauer J. et al .
MR-Bildgebung und MR-Spektroskopie zur Charakterisierung von Kardiomyopathien bei
Jugendlichen – erste Ergebnisse.
Fortschr Röntgenstr.
2007;
179
932-937
MissingFormLabel
- 18
Kostler H, Beer M, Landschutz W. et al .
31P-MR-Spektroskopie allerWandabschnitte des menschlichen Herzens bei 1,5 T mit akquisitionsgewichteter
Chemical-shift-Bildgebung.
Fortschr Röntgenstr.
2001;
173
1093-1098
MissingFormLabel
- 19
Li C W, Negendank W G, Murphy-Boesch J. et al .
Molar quantitation of hepatic metabolites in vivo in proton-decoupled, nuclear Overhauser
effect enhanced 31P NMR spectra localized by three-dimensional chemical shift imaging.
NMR Biomed.
1996;
9
141-155
MissingFormLabel
- 20
Meyerhoff D J, Karczmar G S, Weiner M W.
Abnormalities of the liver evaluated by 31P MRS.
Invest Radiol.
1989;
24
980-984
MissingFormLabel
- 21
Leyvraz S, Spataro V, Bauer J. et al .
Treatment of ocular melanoma metastatic to the liver by hepatic arterial chemotherapy.
J Clin Oncol.
1997;
15
2589-2595
MissingFormLabel
- 22
Becker J C, Terheyden P, Kampgen E. et al .
Treatment of disseminated ocular melanoma with sequential fotemustine, interferon
alpha, and interleukin 2.
Br J Cancer.
2002;
87
840-845
MissingFormLabel
- 23
Kim E E, Haynie T P.
Role of nuclear medicine in chemotherapy of malignant lesions.
Semin Nucl Med.
1985;
15
12-20
MissingFormLabel
- 24
Beer M, Landschutz W, Meininger M. et al .
Quantifizierung energiereicher Phosphate im gesunden und geschädigten Herzmuskel mittels
SLOOP 31P-MR-Spektroskopie.
Fortschr Röntgenstr.
1999;
171
65-68
MissingFormLabel
- 25
Doyle V L, Howet F A, Griffiths J R.
The effect of respiratory motion on CSI localized MRS. Cooperative Group on MR Applications
to Cancer.
Physics in medicine and biology.
2000;
45
2093-2104
MissingFormLabel
- 26
Bovee W, Canese R, Decorps M. et al .
Absolute metabolite quantification by in vivo NMR spectroscopy: IV. Multicentre trial
on MRSI localisation tests.
Magnetic resonance imaging.
1998;
16
1113-1125
MissingFormLabel
- 27
Brinkmann G, Melchert U H, Emde L. et al .
In vivo P-31-MR-spectroscopy of focal hepatic lesions. Effectiveness of tumor detection
in clinical practice and experimental studies of surface coil characteristics and
localization technique.
Invest Radiol.
1995;
30
56-63
MissingFormLabel
- 28
Oberhaensli R D, Galloway G J, Taylor D J. et al .
Assessment of human liver metabolism by phosphorus-31 magnetic resonance spectroscopy.
Br J Radiol.
1986;
59
695-699
MissingFormLabel
- 29
Buchli R, Meier D, Martin E. et al .
Assessment of absolute metabolite concentrations in human tissue by 31P MRS in vivo.
Part II: Muscle, liver, kidney.
Magn Reson Med.
1994;
32
453-458
MissingFormLabel
- 30
Miller K, Halow J, Koretsky A P.
Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia
and ischemia.
Am J Physiol.
1993;
265
C1544-1551
MissingFormLabel
- 31
Menon D K, Harris M, Sargentoni J. et al .
In vivo hepatic 31P magnetic resonance spectroscopy in chronic alcohol abusers.
Gastroenterology.
1995;
108
776-788
MissingFormLabel
- 32
Oberhaensli R D, Hilton-Jones D, Bore P J. et al .
Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance
spectroscopy.
Lancet.
1986;
2
8-11
MissingFormLabel
- 33
Negendank W.
Studies of human tumors by MRS: a review.
NMR Biomed.
1992;
5
303-324
MissingFormLabel
- 34
Podo F.
Tumour phospholipid metabolism.
NMR Biomed.
1999;
12
413-439
MissingFormLabel
- 35
Meyerhoff D J, Boska M D, Thomas A M. et al .
Alcoholic liver disease: quantitative image-guided P-31 MR spectroscopy.
Radiology.
1989;
173
393-400
MissingFormLabel
- 36
Lim A K, Patel N, Hamilton G. et al .
31P MR spectroscopy in assessment of response to antiviral therapy for hepatitis C
virus-related liver disease.
Am J Roentgenol.
2007;
189
819-823
MissingFormLabel
- 37
Noren B, Dahlqvist O, Lundberg P. et al .
Separation of advanced from mild fibrosis in diffuse liver disease using (31)P magnetic
resonance spectroscopy.
Eur J Radiol.
2008;
66
313-320
MissingFormLabel
- 38
Stubbs M, Rodrigues L M, Gusterson B A. et al .
Monitoring tumor growth and regression by 31P magnetic resonance spectroscopy.
Adv Enzyme Regul.
1990;
30
217-230
MissingFormLabel
- 39
Oberhaensli R, Rajagopalan B, Galloway G J. et al .
Study of human liver disease with P-31 magnetic resonance spectroscopy.
Gut.
1990;
31
463-467
MissingFormLabel
- 40
McKenzie E J, Jackson M, Sun J. et al .
Monitoring the development of hepatocellular carcinoma in woodchucks using 31P-MRS.
Magma.
2005;
18
201-205
MissingFormLabel
Dr. Meinrad Beer
Institut für Röntgendiagnostik, Universitätsklinikum Würzburg
Oberdürrbacher Strasse 6
97080 Würzburg
Phone: ++ 49/9 31/20 13 43 18
Fax: ++ 49/9 31/20 13 47 71
Email: beer@roentgen.uni-wuerzburg.de