References and Notes
<A NAME="RD35107ST-1">1</A>
Varki A.
Glycobiology
1993,
3:
97
<A NAME="RD35107ST-2">2</A>
Dwek RA.
Chem. Rev.
1996,
96:
683
<A NAME="RD35107ST-3A">3a</A>
Selvador LA.
Eloffson M.
Kihlberg J.
Tetrahedron
1995,
51:
5643
<A NAME="RD35107ST-3B">3b</A>
Taylor CM.
Tetrahedron
1998,
54:
11317
<A NAME="RD35107ST-3C">3c</A>
Davis BG.
Chem. Rev.
2002,
102:
579
<A NAME="RD35107ST-4A">4a</A>
Carbohydrate Chemistry
Boons G.-J.
Chapman and Hall;
London:
1998.
<A NAME="RD35107ST-4B">4b</A>
Dondoni A.
Marra A.
Chem. Rev.
2000,
100:
4395
<A NAME="RD35107ST-5">5</A>
Arya P.
Kuttere KMK.
Barkley A.
J. Comb. Chem.
2000,
2:
120
<A NAME="RD35107ST-6">6</A>
Kunz H.
Angew. Chem., Int. Ed. Engl.
1987,
26:
294
<A NAME="RD35107ST-7">7</A>
Ichikawa Y.
Nishiyama T.
Isobe M.
Synlett
2000,
1253
<A NAME="RD35107ST-8">8</A>
Cassarco MR.
Brown RT.
J. Org. Chem.
2003,
68:
8853
<A NAME="RD35107ST-9">9</A>
McDonald FE.
Danishefsky SJ.
J. Org. Chem.
1992,
57:
7001
<A NAME="RD35107ST-10">10</A>
Khorlin AY.
Zurabyan SE.
Macharadze RG.
Carbohydr. Res.
1980,
85:
201
<A NAME="RD35107ST-11">11</A>
Gustafson GL.
Gander JE.
Methods Enzymol.
1984,
107:
172
<A NAME="RD35107ST-12">12</A>
Kuijpers BHM.
Groothuys S.
Keereweer AR.
Quaedflieg PJLM.
Blaauw RH.
Delft FLV.
Rutjes FPJT.
Org. Lett.
2004,
6:
3123
<A NAME="RD35107ST-13">13</A>
Houben-Weyl: Synthesis of Peptides and Peptidomimetics
Vol. E22c:
Goodman M.
Felix A.
Moroder L.
Toniolo C.
Thieme;
Stuttgart, New York:
2003.
<A NAME="RD35107ST-14">14</A>
Wo Y.
Kohn J.
J. Am. Chem. Soc.
1991,
113:
687
<A NAME="RD35107ST-15">15</A>
Moran EJ.
Wilson TE.
Cho CY.
Cherry SR.
Schultz PG.
Biopolymers (Pept. Sci.)
1995,
37:
213
<A NAME="RD35107ST-16">16</A>
Cho CY.
Moran EJ.
Cherry SR.
Stephans JC.
Fodor SPA.
Adams CL.
Sundaram A.
Jacobs JW.
Schultz PG.
Science
1993,
261:
1303
<A NAME="RD35107ST-17">17</A>
Cho CY.
Youngquist RS.
Paikoff SJ.
Beresini MH.
Hebert AR.
Berleau LT.
Liu CW.
Wemmer DE.
Keough T.
Schultz PG.
J. Am. Chem. Soc.
1998,
120:
7706
<A NAME="RD35107ST-18">18</A>
Ichikawa Y.
Ohara F.
Kotsuki H.
Nakano K.
Org. Lett.
2006,
8:
5009
<A NAME="RD35107ST-19">19</A>
Sawada D.
Sasayama S.
Takahashi H.
Ikegami S.
Tetrahedron Lett.
2006,
47:
7219
<A NAME="RD35107ST-20A">20a</A>
Eckert H.
Forster B.
Angew Chem., Int. Ed. Engl.
1987,
26:
894
<A NAME="RD35107ST-20B">20b</A>
Alternatively, the reaction was also carried out by purging phosgene in to a solution
of Fmoc-Ser-OMe (1.1 mmol) and the resulting Fmoc-Ser(OCOCl)OMe (1a) was isolated by the removal of solvent. But considering the health hazards and handling
difficulties associated with phosgene, the use of triphosgene is preferred.
<A NAME="RD35107ST-21">21</A>
Procedure for the Synthesis of N
α
-Fmoc-Ser(OCOCl)OMe (1a)
To a stirred solution of N
α-Fmoc-Ser-OMe (1 mmol) in anhyd CH2Cl2 (15 mL) at 0 °C was added triphosgene (0.4 mmol) and pyridine (1.5 mmol) and stirring
was continued for 30 min or till the completion of reaction (TLC analysis). Then it
was washed with sat. sodium meta bisulfate solution (2 × 10 mL), H2O (2 × 10 mL) and dried over anhyd Na2SO4. The solvent was evaporated under reduced pressure and the residue was precipitated
in EtOAc-hexane in to a pure solid powder which was filtered and dried.
Selected Spectral Data of Fmoc-Ser(OCOCl)OMe (1a)
Yield 92%; mp 108 °C. 1H NMR (300 MHz, CDCl3): δ = 2.40 (m, 1 H), 3.20 (s, 3 H), 3.70 (t, 2 H), 3.90 (d, 2 H), 4.28 (m, 1 H),
5.30 (m, 1 H), 7.10-7.50 (m, 8 H). 13C NMR (300 MHz, CDCl3): δ = 43.1, 50.2, 55.4, 67.1, 70.8, 119.0, 122.2, 125.3, 127.0, 141.0, 149.0, 152.0,
156.0, 170.5. IR (KBr): 1698, 1770 cm-1. HRMS: m/z calcd for [M + Na]: 426.8028; found :426.8014.
<A NAME="RD35107ST-22">22</A>
Furniss BS.
Hannaford AJ.
Smith PWG.
Tatchell AR.
Vogel’s Textbook of Practical Organic Chemistry
Addison Wesley Longman Ltd.;
London:
1989.
<A NAME="RD35107ST-23">23</A>
Deng S.
Gangadharmath U.
Chang CT.
J. Org. Chem.
2006,
71:
5179
<A NAME="RD35107ST-24">24</A>
Preparation of Carbamate-Tethered Glycosylated Amino Acid Ester 2
To a solution 1 or 3 (1 mmol) in THF (15 mL) was added glycosyl-1-amine at 0 °C followed by NMM (1.5 mmol)
and the reaction mixture was stirred till the completion of reaction. The solvent
was evaporated and the residue was taken in CH2Cl2 (15 mL). To this, 10% citric acid solution (15 mL) was added and the resulting layers were
separated. The organic phase was washed with 10% Na2CO3 solution (2 × 10 mL), H2O (2 × 10 mL), and brine (15 mL). The residue, after the removal of solvent, was triturated
with hexane to get the product as white crystalline solid.
Spectral Data of N
α
-Fmoc-Thr(OCONH-2,3,4,6-tetra-
O
-acetyl-β-d-glucopyranosyl)OMe (2d)
Yield 82%. 1H NMR (300 MHz, CDCl3): δ = 1.2 (d, 3 H), 1.8 (m, 1 H), 2.0 (s, 12 H), 2.31 (m, 1 H), 3.75 (s, 3 H), 4.12
(d, 2 H), 4.23 (m, 1 H), 4.45 (m, 5 H), 4.98 (d, 2 H), 5.4 (m, 2 H), 7.40-7.63 (m,
8 H). 13C NMR (300 MHz, CDCl3): δ = 17.1, 21.3, 21.8, 22.1, 45.0, 55.7, 62.2, 62.5, 67.0, 68.2, 68.9, 71.1, 71.5,
72.8, 90.5, 118.8, 123.2, 125.9, 127.3, 141.5, 149.0, 152.0, 157.2, 166.0, 168.2,
169.3, 178.0. IR (KBr): 1695, 1762 cm-1. HRMS: m/z calcd for [M + Na]: 751.6863; found: 751.6870.
<A NAME="RD35107ST-25">25</A>
Preparation of Fmoc-Ser(OCOOPfp)OMe (3a)
Pentafluorophenol (1.1 mmol) was added to a stirred solution of Fmoc-Ser(OCOCl)OMe
(1 mmol) in anhyd CH2Cl2 (15 mL) at 0 °C followed by NMM (1.5 mmol). After 30 min the precipitated carbonate
was filtered and the residue was washed with H2O, Et2O, and dried under suction to afford the product as white solid powder.