Subscribe to RSS
DOI: 10.1055/s-2008-1067231
Dimethylboron Bromide (Me2BBr): A Scarcely Recognized Mild and Versatile Reagent with Astonishing Potential
Publication History
Publication Date:
15 October 2008 (online)
Biographical Sketches

Introduction
Originally synthesized by Wiberg et al. [¹] in 1953, dimethylboron bromide was first used in organic synthesis by Guindon. [²] Over the course of the last decades, several applications have been discovered, such as the cleavage of useful protecting groups (MOM, MEM, Me, PMB, Bn, trityl ethers, miscellaneous ketals and acetals), the regio- and stereoselective ring opening of unsymmetrical epoxides, the reductive alkylation of azides, and the deoxygenation of sulfoxides to sulfides. [²b] Some have been reused in total syntheses of complex natural products during the final steps. Thus, its chemoselectivity and its predictable reactivity make it a noteworthy and useful reagent. Nowadays, Me2BBr can be purchased at any chemical supplier. However, this reagent remains expensive; it may be therefore preferable to synthesize it on a preparative scale from BBr3 and SnMe4. [²c] Easily prepared, this colorless pyrophoric liquid (bp 31-32 ˚C) must be stored in solution in dichloromethane. It can be kept for several months under inert atmosphere in the freezer, without any observed decomposition.
Abstracts
(A) Me2BBr has been used to perform, under non-acidic and aprotic conditions, an efficient regio- and chemoselective cleavage of useful protecting groups such as PMB, [³a] Bn, Tr, [³b] [c] Me, [²a] [4] MOM, MEM, MTM, [²c] [5] ethers, ketals and acetals [6] in presence of silyl ether, ester, 1,3-diacetylene, 1,4-diene and phosphonate groups preponderantly by an SN2 mechanism. Recently, this versatile reagent was used at low temperatures for final steps of total syntheses of complex target compounds [5] [6] without affecting other functions, such as methyl, cyclic and allylic ethers, epoxides or lactones, in contrast to reagents such as BBr3, BCl3 and TMSI. |
![]() |
(B) Guindon et al. developed [7a] an ingenious mixture of Me2BBr in combination with BH3˙THF for the reductive cleavage of symmetrical and unsymmetrical benzylidene acetals to their corresponding hydroxy benzyl ethers. Ghosh et al. optimized [7b] these conditions in order to achieve the regiocontrolled reductive cleavage of 4,6-O,O-benzylidene acetals of hexopyranosides to their corresponding 4-O-benzyl ethers in excellent yields without affecting neighboring protecting groups, as can happen with LAH. |
![]() |
(C) Gridnev and Del Rosario reported [8] that the smooth transmetallation of irontricarbonyl complex of cycloheptatrienyl(triphenyl)tin with two equivalents of Me2BBr yielded quantitatively a phenyl(methyl)borane complex and bromodiphenyl(methyl)tin. The resulting complex exhibited [1,7]-B + [1,2]-Fe diatropic migrations. |
![]() |
(D) Dimethylboron bromide was used at -78 ˚C for the regio- and stereoselective ring-opening of a furanosidic 2′,3′-ribo-epoxide to provide the corresponding bromohydrin xylo derivative in an excellent yield. [9] In fact, bromide approach occurs at the less hindered side of the epoxide which is consistent with an SN2-type mechanism. |
![]() |
(E) Highly enantioenriched secondary alcohols (er >30:1) were prepared from various tartrate acetals of the corresponding aldehydes. [¹0] The key step involves the opening of the Johnson-type acetals with Me2BBr, followed by highly diastereoselective cuprate substitutions of the intermediate α-bromo ethers. The auxiliary was easily removed via reduction with SmI2 or by an addition-elimination protocol using NaOMe. |
![]() |
(F) The azide function can undergo a reductive alkylation by treatment with Me2BBr to afford the corresponding N-methylamine compounds. [¹¹] |
![]() |
(G) Hoefelmeyer and Gabbaï reported [¹²] on the synthesis of unsymmetrical α,α′-naphthyl diboranes which were generated through the ring-opening of an uncommon dimesityl(1,8-naphthalenediyl)borate salt. Such electrophilic bidentate naphthalenes are used in molecular and anion recognition, as well as in catalysis. |
![]() |
- 1
Wiberg E.Kruerke U. Z. Naturforsch., B. 1953, 8b: 608 - 2a
Guindon Y.Yoakim C.Morton HE. Tetrahedron Lett. 1983, 24: 2969Reference Ris Wihthout Link - 2b
Guindon Y.Atkinson JG.Morton HE. J. Org. Chem. 1984, 49: 4538Reference Ris Wihthout Link - 2c
Guindon Y.Yoakim C.Morton HE. J. Org. Chem. 1984, 49: 3912Reference Ris Wihthout Link - 3a
Srisiri W.Lamparski HG.O’ Brien DF. J. Org. Chem. 1996, 61: 5911Reference Ris Wihthout Link - 3b
Rauter AP.Figueiredo J.Ismael M.Canda T.Font J.Figueredo M. Tetrahedron: Asymmetry 2001, 12: 1131Reference Ris Wihthout Link - 3c
Kodali DR.Duclos RI. Chem. Phys. Lipids 1992, 61: 169Reference Ris Wihthout Link - 4a
May JA.Namil A.Chen HH.Dantanarayana AP.Dupre B.Liao JC. Bioorg. Med. Chem. Lett. 2006, 14: 2052Reference Ris Wihthout Link - 4b
Pearson WH.Lee IY.Mi Y.Stoy P. J. Org. Chem. 2004, 69: 9109Reference Ris Wihthout Link - 5a
Inoue M.Ohashi I.Kawaguchi T.Hirania M. Angew. Chem. Int. Ed. 2008, 47: 1777Reference Ris Wihthout Link - 5b
Garcia-Fortanet J.Murga J.Carda M.Marco JA.Matesanz R.Diaz JF.Barasoain I. Chem. Eur. J. 2007, 13: 5060Reference Ris Wihthout Link - 5c
Wender PA.Hilinski MK.Skaanderup PR.Soldermann NG.Mooberry SL. Org. Lett. 2006, 8: 4105Reference Ris Wihthout Link - 6a
Pattenden G.Ashweek NJ.Baker-Glenn CAG.Kempson J.Walker GM.Yee JGK. Org. Biomol. Chem. 2008, 6: 1478Reference Ris Wihthout Link - 6b
Mulzer J.Berger M. J. Org. Chem. 2004, 69: 891Reference Ris Wihthout Link - 7a
Guindon Y.Girard Y.Berthiaume S.Gorys V.Lemieux R.Yoakim C. Can. J. Chem. 1990, 68: 897Reference Ris Wihthout Link - 7b
Ghosh M.Dulina RG.Kakarla R.Sofia MJ. J. Org. Chem. 2000, 65: 8387Reference Ris Wihthout Link - 8
Gridnev ID.Del Rosario MKC. Organometallics 2005, 24: 4519 - 9
Michel BY.Krishnakumar KS.Strazewski P. Synlett 2008, 2461 - 10
Guindon Y.Ogilvie WW.Bordeleau J.Cui WL.Durkin K.Gorys V.Juteau H.Lemieux R.Liotta D.Simoneau B.Yoakim C. J. Am. Chem. Soc. 2003, 125: 428 - 11
Huang H.Drueckhammer DG. Chem. Commun. 2005, 5196 - 12
Hoefelmeyer JD.Gabbaï FP. Organometallics 2002, 21: 982
References
- 1
Wiberg E.Kruerke U. Z. Naturforsch., B. 1953, 8b: 608 - 2a
Guindon Y.Yoakim C.Morton HE. Tetrahedron Lett. 1983, 24: 2969Reference Ris Wihthout Link - 2b
Guindon Y.Atkinson JG.Morton HE. J. Org. Chem. 1984, 49: 4538Reference Ris Wihthout Link - 2c
Guindon Y.Yoakim C.Morton HE. J. Org. Chem. 1984, 49: 3912Reference Ris Wihthout Link - 3a
Srisiri W.Lamparski HG.O’ Brien DF. J. Org. Chem. 1996, 61: 5911Reference Ris Wihthout Link - 3b
Rauter AP.Figueiredo J.Ismael M.Canda T.Font J.Figueredo M. Tetrahedron: Asymmetry 2001, 12: 1131Reference Ris Wihthout Link - 3c
Kodali DR.Duclos RI. Chem. Phys. Lipids 1992, 61: 169Reference Ris Wihthout Link - 4a
May JA.Namil A.Chen HH.Dantanarayana AP.Dupre B.Liao JC. Bioorg. Med. Chem. Lett. 2006, 14: 2052Reference Ris Wihthout Link - 4b
Pearson WH.Lee IY.Mi Y.Stoy P. J. Org. Chem. 2004, 69: 9109Reference Ris Wihthout Link - 5a
Inoue M.Ohashi I.Kawaguchi T.Hirania M. Angew. Chem. Int. Ed. 2008, 47: 1777Reference Ris Wihthout Link - 5b
Garcia-Fortanet J.Murga J.Carda M.Marco JA.Matesanz R.Diaz JF.Barasoain I. Chem. Eur. J. 2007, 13: 5060Reference Ris Wihthout Link - 5c
Wender PA.Hilinski MK.Skaanderup PR.Soldermann NG.Mooberry SL. Org. Lett. 2006, 8: 4105Reference Ris Wihthout Link - 6a
Pattenden G.Ashweek NJ.Baker-Glenn CAG.Kempson J.Walker GM.Yee JGK. Org. Biomol. Chem. 2008, 6: 1478Reference Ris Wihthout Link - 6b
Mulzer J.Berger M. J. Org. Chem. 2004, 69: 891Reference Ris Wihthout Link - 7a
Guindon Y.Girard Y.Berthiaume S.Gorys V.Lemieux R.Yoakim C. Can. J. Chem. 1990, 68: 897Reference Ris Wihthout Link - 7b
Ghosh M.Dulina RG.Kakarla R.Sofia MJ. J. Org. Chem. 2000, 65: 8387Reference Ris Wihthout Link - 8
Gridnev ID.Del Rosario MKC. Organometallics 2005, 24: 4519 - 9
Michel BY.Krishnakumar KS.Strazewski P. Synlett 2008, 2461 - 10
Guindon Y.Ogilvie WW.Bordeleau J.Cui WL.Durkin K.Gorys V.Juteau H.Lemieux R.Liotta D.Simoneau B.Yoakim C. J. Am. Chem. Soc. 2003, 125: 428 - 11
Huang H.Drueckhammer DG. Chem. Commun. 2005, 5196 - 12
Hoefelmeyer JD.Gabbaï FP. Organometallics 2002, 21: 982
References






