References and Notes
<A NAME="RU00908ST-1A">1a </A>
Kim I.
Lee GH.
No ZS.
Bull. Korean Chem. Soc.
2007,
28:
685
<A NAME="RU00908ST-1B">1b </A>
Kim I.
Choi J.
Won HK.
Lee GH.
Tetrahedron Lett.
2007,
48:
6863
<A NAME="RU00908ST-1C">1c </A>
Kim I.
Won HK.
Choi J.
Lee GH.
Tetrahedron
2007,
63:
12954
<A NAME="RU00908ST-1D">1d </A>
Kim I.
Kim SG.
Kim JY.
Lee GH.
Tetrahedron Lett.
2007,
48:
8976
<A NAME="RU00908ST-1E">1e </A>
Kim I.
Kim SG.
Choi J.
Lee GH.
Tetrahedron
2008,
64:
664
<A NAME="RU00908ST-2A">2a </A>
Smith CR.
Bunnelle EM.
Rhodes AJ.
Sarpong R.
Org. Lett.
2007,
9:
1169
<A NAME="RU00908ST-2B">2b </A>
Yan B.
Zhou Y.
Zhang H.
Chen J.
Liu Y.
J. Org. Chem.
2007,
72:
7783
<A NAME="RU00908ST-3">3 </A>
We also observed the direct synthesis of indolizinones from propargylic alcohols with
Cs2 CO3 (Scheme
[8 ]
). These results will be communicated elsewhere.
Scheme 8
<A NAME="RU00908ST-4">4 </A>
When Et3 N was employed instead to initiate the 1,2-shift, very long reaction times (more than
48 h) and elevated temperatures were required.
<A NAME="RU00908ST-5">5 </A>
General Procedure : To a stirred solution of propargylic alcohol 5a (0.84 mmol) in CH2 Cl2 (3 mL) was added iodine (1.5 equiv) at r.t. After being stirred at r.t. for 5 h,
the reaction mixture was quenched by the addition of excess aq NaHSO3 solution. The solid (indolizinium salt 6a ) was filtered, washed with CH2 Cl2 , and dried.1-Hydroxy-2-iodo-1-methyl-3-phenyl-1
H
-indolizinium Iodide
(6a)
1 H NMR (300 MHz, DMSO-d
6 ) δ = 8.64-8.59 (m, 2 H), 8.49 (d, J = 7.2 Hz, 1 H), 7.97 (t, J = 7.2 Hz, 1 H), 7.70-7.65 (m, 5 H), 6.71 (s, 1 H), 1.63 (s, 3 H). 13 C NMR (75 MHz, DMSO-d
6 ): δ = 160.0, 145.6, 142.6, 136.6, 132.1, 131.3, 130.3, 128.3, 126.4, 124.0, 114.5,
82.6, 24.8. IR (KBr): 3496, 3214, 3080, 1622, 1481, 1360 cm-1 . ESI-HRMS: m/z calcd for C15 H14 INO [M + 1]+ : 351.0036; found: 351.0041. A mixture of indolizinium salt 6a (0.31 mmol) and Cs2 CO3 (1.5 equiv) in MeOH (10 mL) was heated to reflux for 1 h. After being cooled to r.t.,
the reaction mixture was concentrated in vacuo. The residue was diluted with EtOAc
and washed with H2 O. The water layer was extracted with EtOAc one more time. The combined organic layers
were dried over MgSO4 , filtered, and evaporated under reduced pressure. The resulting residue was purified
by silica gel column chromatography (hexanes-EtOAc-CH2 Cl2 , 7:1:2) to give 2-iodoindolizinone 7a .
2-Iodo-8a-methyl-3-phenylindolizin-1(8a
H
)-one
(7a)
1 H NMR (300 MHz, CDCl3 ): δ = 7.57-7.55 (m, 3 H), 7.50-7.46 (m, 2 H), 6.30 (d, J = 7.2 Hz, 1 H), 5.97-5.89 (m, 2 H), 5.33 (t, J = 6.3 Hz, 1 H), 1.48 (s, 3 H). 13 C NMR (75 MHz, CDCl3 ): δ = 199.0, 131.2, 129.2, 129.1, 129.0, 123.9, 123.1, 122.2, 109.3, 67.8, 63.5,
25.5. IR (KBr): 3092, 2978, 1674, 1522, 1420, 1295 cm-1 . HRMS (EI): m/z calcd for [C15 H12 INO]+ : 348.9964; found: 348.9968.
For other unsuccessful iodocyclization results with terminal alkynes, see:
<A NAME="RU00908ST-6A">6a </A>
Worlikar SA.
Kesharwani T.
Yao T.
Larock RC.
J. Org. Chem.
2007,
72:
1347
<A NAME="RU00908ST-6B">6b </A>
Bew SP.
El-Taeb GMM.
Jones S.
Knight DW.
Tan W.-F.
Eur. J. Org. Chem.
2007,
5759
<A NAME="RU00908ST-7">7 </A> Reaction of I2 with a small amount of H2 O contained in CH2 Cl2 is known to produce HI, which would be responsible for generation of carbocation
A
<A NAME="RU00908ST-8">8 </A>
Sromek AW.
Rubina M.
Gevorgyan V.
J. Am. Chem. Soc.
2005,
127:
10500
<A NAME="RU00908ST-9">9 </A>
The different nucleophilicity of the nitrogens in pyridine and quinoline should be
also important. We thank one of the reviewers for this comment.
<A NAME="RU00908ST-10">10 </A>
The diastereomeric ratios of indolizinium salts 9 vary depending on the cyclization substrates 8 although they were inconsequential.
<A NAME="RU00908ST-11">11 </A>
1-Hydroxy-2-iodo-1-methyl-3-phenyl-2,3-dihydro-1
H
-indolzinium iodide
(9a) Mixture of diastereomers (1.1:1). 1 H NMR (300 MHz, DMSO-d
6 ): δ = 8.70-8.65 (d, J = 7.8 Hz, 1 H), 8.43, 8.34 (d, J = 8.1 Hz, 1 H), 8.27, 8.25 (d, J = 6.0 Hz, 1 H), 7.99, 7.93 (d, J = 7.5 Hz, 1 H), 7.64-7.54 (m, 5 H), 6.89, 6.87 (s, 1 H), 6.20, 6.17 (d, J = 10.8 Hz, 1 H), 4.77, 4.74 (d, J = 10.8 Hz, 1 H), 1.79, 1.66 (s, 1 H). 13 C NMR (75 MHz, DMSO-d
6 ): δ = 159.9, 157.5, 147.7, 140.7, 140.4, 132.4, 132.3, 131.3, 131.1, 130.4, 130.2,
130.0, 129.9, 128.3, 128.1, 123.7, 123.6, 78.9, 78.1, 76.8, 76.7, 37.7, 37.5, 28.3,
22.2. IR (KBr): 3100, 1678, 1536, 1486, 1392, 1251 cm-1 . ESI-HRMS: m/z calcd for C15 H16 INO [M + 1]+ : 353.0193; found: 353.0198.
8a-Methyl-3-phenylindolizin-1 (8a
H
)-one
(10a)
1 H NMR (300 MHz, CDCl3 ): δ = 7.56-7.47 (m, 5 H), 6.53 (d, J = 7.3 Hz, 1 H), 5.98-5.88 (m, 2 H), 5.38 (ddd, J = 6.8, 4.7, 1.9 Hz, 1 H), 5.18 (s, 1 H), 1.45 (s, 3 H). 13 C NMR (75 MHz, CDCl3 ): δ = 203.2, 172.7, 131.2, 129.8, 129.2, 128.3. 124.0. 123.0, 122.1, 109.0, 99.0,
68.8, 25.2. IR (KBr): 3275, 2939, 1622, 1573, 1485, 1380, 1261, 1136 cm-1 . HRMS (EI): m/z calcd for [C15 H13 NO]+ : 223.0997; found: 223.0993.
<A NAME="RU00908ST-12">12 </A>
Baldwin JE.
J. Chem. Soc., Chem. Commun.
1976,
734
For the synthesis of 5,6,7,8-tetrahydro-8-quinolinone, see:
<A NAME="RU00908ST-13A">13a </A>
Thummel RP.
Lefoulon F.
Cantu D.
Mahadevan R.
J. Org. Chem.
1984,
49:
2208
<A NAME="RU00908ST-13B">13b </A>
Kelly TR.
Lebedev RL.
J. Org. Chem.
2002,
67:
2197
<A NAME="RU00908ST-14">14 </A>
Nonaqueous workup, i.e. filtration of the reaction mixture, was used in this case
to isolate the indolizinium salt 6n . Addition of aq NaHSO3 solution to the reaction mixture resulted in uncharacterizable product instead, indicating
that 6n is, unlike others, unstable to an aqueous environment.
For diastereoselective catalytic hydrogenation approaches to indolizidines, see:
<A NAME="RU00908ST-15A">15a </A>
Shono T.
Matsumura Y.
Tsubata K.
Inoue K.
Nishida R.
Chem. Lett.
1983,
21
<A NAME="RU00908ST-15B">15b </A>
Jiang C.
Frontier AJ.
Org. Lett.
2007,
9:
4939 ; and references therein
<A NAME="RU00908ST-15C">15c </A>
Azzouz R.
Fruit C.
Bischoff L.
Marsais F.
J. Org. Chem.
2008,
73:
1154 ; and references therein