References and Notes
<A NAME="RU00808ST-1A">1a</A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RU00808ST-1B">1b</A>
Roush WR. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Chap. 1.1.
p.1
<A NAME="RU00808ST-2A">2a</A>
Thomas EJ.
Chem. Commun.
1997,
411
<A NAME="RU00808ST-2B">2b</A>
Marshall JA.
Chem. Rev.
1996,
96:
31
<A NAME="RU00808ST-2C">2c</A>
Nishigaichi Y.
Takuwa A.
Tetrahedron
1993,
49:
7395
<A NAME="RU00808ST-3A">3a</A>
Brown HC.
Liotta R.
Kramer GW.
J. Org. Chem.
1978,
43:
1058
<A NAME="RU00808ST-3B">3b</A>
Collins S.
Dean WP.
Ward DG.
Organometallics
1988,
7:
2289
<A NAME="RU00808ST-3C">3c</A>
Kira M.
Hino T.
Sakurai H.
Tetrahedron Lett.
1989,
30:
1099
<A NAME="RU00808ST-3D">3d</A>
Satoh M.
Nomoto Y.
Miyaura N.
Suzuki A.
Tetrahedron Lett.
1989,
30:
3789
<A NAME="RU00808ST-3E">3e</A>
Kobayashi S.
Nishio K.
Synthesis
1994,
457
<A NAME="RU00808ST-3F">3f</A>
Masuyama Y.
Tsunoda M.
Kurusu Y.
J. Chem. Soc., Chem. Commun.
1994,
1451
<A NAME="RU00808ST-3G">3g</A>
Gao Y.
Urabe H.
Sato F.
J. Org. Chem.
1994,
59:
5521
<A NAME="RU00808ST-3H">3h</A>
Kobayashi S.
Nishio K.
J. Org. Chem.
1994,
59:
6620
<A NAME="RU00808ST-3I">3i</A>
Sell MS.
Klein WR.
Rieke RD.
J. Org. Chem.
1995,
60:
1077
<A NAME="RU00808ST-3J">3j</A>
Takai K.
Matsukawa N.
Takahashi A.
Fujii T.
Angew. Chem. Int. Ed.
1998,
37:
152
<A NAME="RU00808ST-3K">3k</A>
Takai K.
Toratsu C.
J. Org. Chem.
1998,
63:
6450
<A NAME="RU00808ST-3L">3l</A>
Bareille L.
Gendre PL.
Moise C.
Chem. Commun.
2005,
775
<A NAME="RU00808ST-3M">3m</A> The generation of allylic indium from diene by Ni catalyst was reported, see:
Hirashita T.
Kambe S.
Tsuji H.
Araki S.
Chem. Commun.
2006,
2595
<A NAME="RU00808ST-4">4</A>
Hayashi N.
Honda H.
Yasuda M.
Shibata I.
Baba A.
Org. Lett.
2006,
8:
4553
<A NAME="RU00808ST-5A">5a</A>
Cintas P.
Synlett
1995,
1087
<A NAME="RU00808ST-5B">5b</A>
Marshall JA.
Chemtracts: Org. Chem.
1997,
10:
481
<A NAME="RU00808ST-5C">5c</A>
Li C.-J.
Chan T.-H.
Tetrahedron
1999,
55:
11149
<A NAME="RU00808ST-5D">5d</A>
Araki S.
Hirashita T. In
Main Group Metals in Organic Synthesis
Vol. 1:
Yamamoto H.
Oshima K.
Wiley-VCH;
Weinheim:
2004.
p.323-386
α-Selective allylations:
<A NAME="RU00808ST-6A">6a</A>
Yanagisawa A.
Habaue S.
Yamamoto H.
J. Am. Chem. Soc.
1991,
113:
8955
<A NAME="RU00808ST-6B">6b</A>
Yanagisawa A.
Ogasawara K.
Yasue K.
Yamamoto H.
Chem. Commun.
1996,
367
<A NAME="RU00808ST-6C">6c</A>
Yanagisawa A.
Habaue S.
Yasue K.
Yamamoto H.
J. Am. Chem. Soc.
1994,
116:
6130
<A NAME="RU00808ST-6D">6d</A>
Ito A.
Kishida M.
Kurusu Y.
Masuyama Y.
J. Org. Chem.
2000,
65:
494
<A NAME="RU00808ST-6E">6e</A>
Yamamoto Y.
Maruyama K.
J. Org. Chem.
1983,
48:
1565
<A NAME="RU00808ST-6F">6f</A>
Yamamoto Y.
Saito Y.
Maruyama K.
J. Org. Chem.
1983,
48:
5408
<A NAME="RU00808ST-6G">6g</A>
Kanagawa Y.
Nishiyama Y.
Ishii Y.
J. Org. Chem.
1992,
57:
6988
<A NAME="RU00808ST-6H">6h</A>
Keck GE.
Abbott DE.
Boden EP.
Enholm EJ.
Tetrahedron Lett.
1984,
25:
3927
<A NAME="RU00808ST-6I">6i</A>
Ganis P.
Marton D.
Peruzzo V.
Tagliavini G.
J. Organomet. Chem.
1982,
231:
307
<A NAME="RU00808ST-6J">6j</A>
Benkeser RA.
Siklosi MP.
Mozdzen EC.
J. Am. Chem. Soc.
1978,
100:
2134
α-Selective allylations by allylic indiums:
<A NAME="RU00808ST-7A">7a</A>
Miyabe H.
Yamaoka Y.
Naito T.
Takemoto Y.
J. Org. Chem.
2003,
68:
6745
<A NAME="RU00808ST-7B">7b</A>
Isaac MB.
Chan TH.
Tetrahedron Lett.
1995,
36:
8957
<A NAME="RU00808ST-7C">7c</A>
Hirashita T.
Hayashi Y.
Mitsui K.
Araki S.
J. Org. Chem.
2003,
68:
1309
<A NAME="RU00808ST-7D">7d</A>
Tan KT.
Chng SS.
Cheng HS.
Loh TP.
J. Am. Chem. Soc.
2003,
125:
2958
<A NAME="RU00808ST-7E">7e</A>
Loh TP.
Tan KT.
Yang JY.
Xiang CL.
Tetrahedron Lett.
2001,
42:
8701
<A NAME="RU00808ST-7F">7f</A>
Loh TP.
Tan KT.
Hu QY.
Tetrahedron Lett.
2001,
42:
8705
<A NAME="RU00808ST-7G">7g</A>
Araki S.
Ito H.
Katsumura N.
Butsugan Y.
J. Organomet. Chem.
1989,
369:
291
We and other groups have developed the generation and synthetic use of dihaloindium
hydrides (HInX2). See:
<A NAME="RU00808ST-8A">8a</A>
Baba A.
Shibata I.
Chem. Rec.
2005,
5:
323
<A NAME="RU00808ST-8B">8b</A>
Inoue K.
Sawada A.
Shibata I.
Baba A.
Tetrahedron Lett.
2001,
42:
4661
<A NAME="RU00808ST-8C">8c</A>
Inoue K.
Sawada A.
Shibata I.
Baba A.
J. Am. Chem. Soc.
2002,
124:
906
<A NAME="RU00808ST-8D">8d</A>
Hayashi N.
Shibata I.
Baba A.
Org. Lett.
2004,
6:
4981
<A NAME="RU00808ST-8E">8e</A>
Hayashi N.
Shibata I.
Baba A.
Org. Lett.
2005,
7:
3093
<A NAME="RU00808ST-8F">8f</A>
Takami K.
Yorimitsu H.
Oshima K.
Org. Lett.
2002,
4:
2993
<A NAME="RU00808ST-8G">8g</A>
Miura K.
Tomita M.
Yamada Y.
Hosomi A.
J. Org. Chem.
2007,
72:
787
<A NAME="RU00808ST-9">9</A>
Typical Procedure
A 10 mL round-bottom flask charged with InCl3 (2.0 mmol) was dried by heating to 110 °C under reduced pressure (1 mmHg) for 1 h.
After the nitrogen was filled, THF (2 mL) was added to dissolve InCl3. To the mixture was added Bu3SnH (2.0 mmol) at -78 °C. The mixture was then stirred for 10 min to prepare dichloroindium
hydride (HInCl2). After the solution was warmed up to r.t., 2,3-dimethyl-1,3-butadiene (1a, 4.0 mmol) was added and the resulting mixture was stirred for 5 h. Then benzil (2b, 1.0 mmol) was added and stirred for 14 h. The resulting mixture was quenched by
aq 1 N HCl (5 mL) and extracted with Et2O
(3 × 10 mL). The combined organic layer was treated with aq NH4F and then the precipitate was filtered to remove the tin compound. The filtrate was
extracted with Et2O and dried over MgSO4. Concentration followed by silica gel column chromatography eluting with hexane-EtOAc
(90:10) afforded 4ab as a solid.
<A NAME="RU00808ST-10">10</A>
Analytical and Spectroscopic Data of Selected Compounds
Compound 3ab: mp 65-66 °C. IR (KBr): 3494 (OH), 1685 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.67-7.59 (m, 4 H), 7.37-7.23 (m, 6 H), 5.12 (s, 1 H), 5.02 (s, 1 H), 3.52
(s, 1 H), 1.56 (s, 3 H), 1.46 (s, 3 H), 1.23 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.43, 151.81, 138.62, 138.42, 131.38, 129.46, 127.79, 127.62, 127.56, 127.15,
115.61, 83.54, 49.37, 24.49, 24.15, 22.85. MS (CI): m/z = 295 (70) [M+ + 1], 278 (22), 277 (100), 212 (20), 211 (86), 105(34). HRMS (CI, +0.9 mmu): m/z calcd for C20H23O2: 295.1698; found: 295.1707 [M+ + 1].
Compound 4ab: mp 88-89 °C. IR (KBr): 3498 (OH), 1670 (C=O) cm-1; 1H NMR (400 MHz, CDCl3): δ = 7.89-7.79 (m, 2 H), 7.63-7.53 (m, 2 H), 7.43-7.25 (m, 6 H), 3.63 (s, 1 H),
3.40 (d, J = 13.8 Hz, 1 H), 2.96 (d, J = 13.8 Hz, 1 H), 1.66 (s, 3 H), 1.61 (s, 3 H), 1.39 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 201.39, 143.14, 135.29, 132.61, 132.35, 130.32, 128.69, 127.89, 127.54, 125.11,
122.84, 81.80, 44.66, 21.22, 21.02, 19.74. MS (CI): m/z = 295 (67) [M+ + 1], 278 (22), 277 (100). HRMS (CI, +0.5 mmu): m/z calcd for C20H23O2: 295.1698; found: 295.1703 [M+ + 1].
Compound 4ac: IR (neat): 3514 (OH), 1732 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 8.0 Hz, 2 H), 7.35 (dd, J = 8.0, 7.5 Hz, 2 H), 7.29 (d, J = 7.5 Hz, 1 H), 3.74 (s, 3 H), 3.50 (s, 1 H), 3.10 (d, J = 13.8 Hz, 1 H), 2.87 (d, J = 13.8 Hz, 1 H), 1.68 (s, 6 H), 1.60 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 175.59, 142.20, 131.19, 128.08, 127.58, 125.64, 122.15, 78.00, 52.91, 44.71,
21.11, 21.00, 19.48. MS (EI, 70 eV): m/z = 248 (1) [M+], 105 (100), 84 (39), 77 (23). HRMS (EI, +0.2 mmu): m/z calcd for C15H20O3: 248.1412; found: 248.1414 [M+].
Compound 4ad: IR (neat): 3564 (OH) cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.44 (d, J = 8.0 Hz, 2 H), 7.31 (dd, J = 8.0, 7.2 Hz, 2 H), 7.23 (t, J = 7.2 Hz, 1 H), 3.67 (d, J = 9.3 Hz, 1 H), 3.57 (d, J = 9.3 Hz, 1 H), 3.37 (s, 3 H), 2.78 (s, 1 H), 2.75 (d, J = 13.8 Hz, 1 H), 2.47 (d, J = 13.8 Hz, 1 H), 1.61 (s, 3 H), 1.53 (s, 3 H), 1.41 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.12, 129.66, 127.85, 126.61, 125.33, 123.35, 79.10, 76.51, 59.35, 44.15,
20.92, 20.78, 20.41. MS (CI): m/z = 235 (1) [M+ + 1], 217 (100), 151 (32). HRMS (CI, -0.2 mmu): m/z calcd for C15H23O2: 235.1698; found: 235.1696 [M+ + 1].
<A NAME="RU00808ST-11">11</A>
Although we tried the reaction of simple acetophenone (2e) with diene 1a in the presence of equimolar amount of Lewis basic additives such as Ph3P and HMPA, only a small amount of α-adduct 4ae was obtained at r.t. So we think that intramolecular coordination is more important
than intermolecular coordination by ligand.