Horm Metab Res 2008; 40(5): 306-310
DOI: 10.1055/s-2008-1073140
Original

© Georg Thieme Verlag KG Stuttgart · New York

Estrogen and Progesterone Lower Cyclin B1 and D1 Expression, Block Cell Cycle in G2/M, and Trigger Apoptosis in Human Adrenal Carcinoma Cell Cultures

J. W. Brown 1 , 2 , L. M. Prieto 1 , 2 , C. Perez-Stable 2 , 3 , M. Montoya 1 , 2 , S. Cappell 1 , L. M. Fishman 1 , 2
  • 1Adrenal Research Laboratory, V. A. Medical Center, Miami, FL, USA
  • 2Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
  • 3Geriatric Research, Education and Clinical Center, V. A. Medical Center, Miami, FL, USA
Further Information

Publication History

received 04.10.2007

accepted 12.10.2007

Publication Date:
19 May 2008 (online)

Abstract

The effects of 17 β-estradiol and progesterone were evaluated separately and in combination, on the growth, survival, and cell cycle dynamics of SW-13 human adrenal carcinoma cells in culture. Both hormones significantly decreased cell survival, with dose response curves at four days demonstrating EC50s estimated at 1.2×10-5 M for 17 β-estradiol and 4.8×10-6 M for progesterone. Flow cytometry studies of these cultures indicated a strong G2/M blocking effect of both steroids, either individually or in combination; the effects of progesterone and of both agents together were substantially greater than the effect with 17 β-estradiol alone. The sub-G1 region of the flow cytometry profile was significantly enhanced by exposure to 17 β-estradiol and even more by progesterone. Sub-G1 “apoptosis” was confirmed by fragmented and condensed nuclear chromatin staining using a standard DAPI fluorescence assay. The expression of the critical cell cycle regulatory proteins cyclin B1 and D1 were significantly decreased by each hormone, with the influence of progesterone again predominating. These data demonstrate that high doses of 17 β-estradiol and progesterone have inhibitory and apoptotic effects on SW-13 human adrenal carcinoma cells in vitro. The observed effects are associated with declines in cyclin B1 and D1 expression as well as a block in G2/M.

References

  • 1 Stewart PM. The adrenal cortex. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS (eds). Williams Textbook of Endocrinology. Philadelphia: WB Saunders Company 2003: 491-551
  • 2 Shan JD, Porvari K, Ruokonen M, Karhu A, Launonen V, Hedberg P, Oikarinen J, Vihko P. Steroid-involved transcriptional regulation of human genes encoding prostatic acid phosphatase, prostate-specific antigen, and prostate-specific glandular kallikrein.  Endocrinology. 1977;  138 3764-3770
  • 3 Myers RB, Oelschlager D, Manne U, Coan PN, Weiss H, Grizzle WE. Androgenic regulation of growth factor and growth factor receptor expression in the CWR22 model of prostatic adenocarcinoma.  Int J Cancer. 1999;  82 424-429
  • 4 Catalano MG, Costantino L, Frairia R, Boccuzzi G, Fortunati N. Sex hormone-binding globulin selectively modulates estradiol-regulated genes in MCF-7 cells.  Horm Metab Res. 2007;  39 288-294
  • 5 Lobanova YS, Scherbakov AM, Shatskaya VA, Krasil’nikov MV. Mechanism of estrogen-induced apoptosis in breast cancer cells: role of the NF-kappaB signaling pathway.  Biochemistry. 2007;  72 320-327
  • 6 Seeger H, Huober J, Wallwiener D, Mueck AO. Inhibition of human breast cancer cell proliferation with estradiol metabolites is as effective as with tamoxifen.  Horm Metab Res. 2004;  36 277-280
  • 7 Seeger H, Rakov V, Mueck AO. Dose-dependent changes of the ratio of apoptosis to proliferation by norethisterone and medroxyprogesterone acetate in human breast epithelial cells.  Horm Metab Res. 2005;  37 468-473
  • 8 Tammela T. Endocrine treatment of prostate cancer.  J Steroid Biochem Mol Biol. 2004;  92 287-295
  • 9 Bland LB, Garzotto M, Loughery TG De, Ryan CW, Schuff KG, Wersinger EM, Lemmon D, Beer TM. Phase II study of transdermal estradiol in androgen-independent prostate cancer.  Cancer. 2005;  103 717-723
  • 10 Blagosklonny MV, Neckers LM. Cytostatic and cytotoxic activity of sex steroids against human leukemia cell lines.  Cancer Lett. 1994;  76 81-86
  • 11 Abrams JS, Parnes H, Aisner J. Current status of high-dose progestins in breast cancer.  Semin Oncol. 1990;  17 68-72
  • 12 Schacter L, Rozencweig M, Canetta R, Kelley S, Nicaise C, Smaldone L. Megestrol acetate: clinical experience.  Cancer Treat Rev. 1989;  16 49-63
  • 13 Wilailak S, Linasmita V, Srisupundit S. Phase II study of high-dose megestrol acetate in platinum-refractory epithelial ovarian cancer.  Anticancer Drugs. 2001;  12 719-724
  • 14 Ramirez PT, Frumovitz M, Bodurka DC, Sun CC, Levenback C. Hormonal therapy for the management of grade 1 endometrial adenocarcinoma: a literature review.  Gynecol Oncol. 2004;  95 133-138
  • 15 Fenton SL, Luong QT, Sarafeim A, Mustard KJ, Pound J, Desmond JC, Gordon J, Drayson MT, Bunce CM. Fibrates and medroxyprogesterone acetate induce apoptosis of primary Burkitt's lymphoma cells and cell lines: potential for applying old drugs to a new disease.  Leukemia. 2003;  17 568-575
  • 16 Bertherat J, Gimenez-Roqueplo AP. New insights in the genetics of adrenocortical tumors, pheochromocytomas and paragangliomas.  Horm Metab Res. 2005;  37 384-390
  • 17 Sandrini F, Villain DP, Tucci S, Moreira AC, Castro M de, Elias LL. Inheritance of R337H p53 gene mutation in children with sporadic adrenocortical tumor.  Horm Metab Res. 2005;  37 231-235
  • 18 Ueberberg B, Tourne H, Redman A, Walz MK, Schmid KW, Mann KW, Mann K, Petersenn S. Differential expression of the human somatostatin receptor subtypes sst1 to sst5 in various adrenal tumors and normal adrenal gland.  Horm Metab Res. 2005;  37 722-728
  • 19 Almeida MQ, Latronico AC. The molecular pathogenesis of childhood adrenocortical tumors.  Horm Metab Res. 2007;  39 461-466
  • 20 Kanczkowski W, Morawietz H, Ziegler CG, Funk RH, Schmitz G, Zacharowski K, Mohn CE, Ehrhart-Bornstein M, Bornstein SR. Pam3CSK4 and LTA-TLRs ligands associated with micodomains induce IL8 production in human adrenocortical cancer cells.  Horm Metab Res. 2007;  39 457-460
  • 21 Stratakis CA. Adrenocortical tumors, primary pigmented adrenocortical disease (PPNAD/Carney complex, and other bilateral hyperplasias: the NIH studies.  Horm Metab Res. 2007;  39 467-473
  • 22 Sherr CJ. The Pezcoller lecture: Cancer cell cycles revisited.  Cancer. 2000;  60 3689-3695
  • 23 King RW, Jackson PK, Kirschner MW. Mitosis in transition.  Cell. 1994;  79 563-571
  • 24 Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells.  Curr Opin Cell Biol. 2003;  15 158-163
  • 25 Brown JW, Cappell S, Perez-Stable C, Fishman LM. Extracts from two marine sponges lower cyclin B1 levels, cause a G2/M cell cycle block and trigger apoptosis in SW-13 human adrenal carcinoma cells.  Toxicon. 2004;  43 841-846
  • 26 Brown JW, Kesler CT, Neary JT, Fishman LM. Effects of androgens and estrogens and catechol and methoxycatechol-estrogen derivatives on mitogen-activated protein kinase (ERK1, 2) activity in SW-13 human adrenal carcinoma cells.  Horm Metab Res. 2001;  33 127-130
  • 27 Brown JW, Kesler CT, Neary JT, Fishman LM. Effects of marine sponge extracts on mitogen-activated protein kinase (MAPK/ERK1, 2) activity in SW-13 human adrenal carcinoma cells.  Toxicon. 2001;  39 1835-1839
  • 28 Krishan A. Rapid DNA content analysis by propidium iodide-hypotonic citrate method.  Methods Cell Biol. 1990;  33 121-125

Correspondence

Dr. J.W. Brown

Adrenal Research Laboratory (151)

V. A. Medical Center

1201 N. W. 16th St.

Miami

33125 FL

USA

Phone: +1/305/324 4455 (Extn 4487)

Fax: +1/305/575 3126

Email: j.brown@miami.edu

    >