Synlett 2008(11): 1583-1602  
DOI: 10.1055/s-2008-1077874
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Strategies for Constructing Diverse Chiral Environments in Multimetallic Bifunctional Asymmetric Catalysis

Masakatsu Shibasaki*, Shigeki Matsunaga, Naoya Kumagai
Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
Fax: +81(3)56845206; e-Mail: mshibasa@mol.f.u-tokyo.ac.jp;
Further Information

Publication History

Received 5 February 2008
Publication Date:
11 June 2008 (online)

Abstract

Recent advances from our group in the design and applications of multimetallic bifunctional asymmetric catalysts are described. Suitable design of chiral ligands and selection of metals were important to realize cooperative bimetallic catalysis. In this account, our strategies for constructing flexible and diverse chiral environments in multimetallic complexes for the rapid optimization of targeted reactions, such as tertiary nitroaldol kinetic resolution, cyclopropanation of electron-deficient olefins, cyano-ethoxycarbonylation of aldehydes, direct Mannich-type reactions, the nitro-Mannich reaction, the anti-selective nitroaldol reaction, and amination, are discussed in detail.

1 Introduction

2 Heterobimetallic Rare-Earth-Alkali Metal-BINOL Complexes

2.1 Background

2.2 Catalytic Kinetic Resolution of Tertiary Nitroaldols

2.3 Catalytic Asymmetric Cyclopropanation of Enones

2.4 Catalytic Asymmetric Cyano-ethoxycarbonylation

3 La Aryloxide/Li Aryloxide/pybox Complexes for Direct Catalytic Asymmetric Mannich-type Reactions

4 Heterobimetallic Transition Metal/Rare-Earth Metal/Dinucleating Schiff Base Complexes

4.1 syn-Selective Nitro-Mannich-type Reaction

4.2 anti-Selective Nitroaldol Reaction

5 Homobimetallic Nickel/Dinucleating Schiff Base Complex

6 Rare-Earth Metal/Amide Complexes for Catalytic Asymmetric Amination

7 Summary

    References

  • For general reviews, see:
  • 1a New Frontiers in Asymmetric Catalysis   Mikami K. Lautens M. Wiley & Sons; Hoboken NJ: 2007. 
  • 1b Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 1c Comprehensive Asymmetric Catalysis   Suppl. 1:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 2003. 
  • 2 For a review, see: Machajewski TD. Wang C.-H. Angew. Chem. Int. Ed.  2000,  39:  1352 
  • For recent reviews from our group, see:
  • 3a Kanai M. Kato N. Ichikawa E. Shibasaki M. Synlett  2005,  1491 
  • 3b Shibasaki M. Kanai M. Matsunaga S. Aldrichimica Acta  2006,  39:  31 
  • 3c Shibasaki M. Matsunaga S. Chem. Soc. Rev.  2006,  35:  269 
  • 3d Shibasaki M. Kanai M. Org. Biomol. Chem.  2007,  5:  2027 
  • 3e Matsunaga S. Shibasaki M. Bull. Chem. Soc. Jpn.  2008,  81:  60 
  • For recent general reviews on bifunctional asymmetric catalysts, see:
  • 4a Yamamoto H. Futatsugi K. Angew. Chem. Int. Ed.  2005,  44:  1924 
  • 4b Ma J.-A. Cahard D. Angew. Chem. Int. Ed.  2004,  43:  4566 
  • 4c Multimetallic Catalysis in Organic Synthesis   Shibasaki M. Yamamoto Y. Wiley-VCH; New York: 2004. 
  • For recent reviews on bifunctional organocatalysis, see:
  • 5a Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 5b Special issue devoted to ‘Asymmetric Organocatalysis’ (Houk, K. N.; List, B., Eds.): Acc. Chem. Res.  2004,  37:  487-631  
  • 5c Berkessel A. Gröger H. Asymmetric Organocatalysis   Wiley-VCH; New York: 2005. 
  • 5d Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  1520 
  • 5e Marcelli T. van Maarseveen JH. Hiemstra H. Angew. Chem. Int. Ed.  2006,  45:  7496 
  • 5f Connon SJ. Chem. Eur. J.  2006,  12:  5418 
  • 5g Lelais G. MacMillan DWC. Aldrichimica Acta  2006,  39:  79 
  • 5h Enders D. Grondal C. Hüttl MRM. Angew. Chem. Int. Ed.  2007,  46:  1570 
  • 5i Barbas CF. Angew. Chem. Int. Ed.  2008,  47:  42 
  • 5j Enantioselective Organocatalysis, Reactions and Experimental Procedures   Dalko PI. Wiley-VCH; Weinheim: 2007. 
  • 6a Sasai H. Arai T. Satow Y. Houk KN. Shibasaki M. J. Am. Chem. Soc.  1995,  117:  6194 ; and references cited therein
  • 6b Sasai H. Suzuki T. Itoh N. Tanaka K. Date T. Okamura K. Shibasaki M. J. Am. Chem. Soc.  1993,  115:  10372 
  • For reviews on early work, see:
  • 7a Shibasaki M. Sasai H. Arai T. Angew. Chem., Int. Ed. Engl.  1997,  36:  1236 
  • 7b Shibasaki M. Yoshikawa N. Chem. Rev.  2002,  102:  2187 
  • 8a Aspinall HC. Chem. Rev.  2002,  102:  1807 
  • 8b Aspinall HC. Dwyer JLM. Greeves N. Steiner A. Organometallics  1999,  18:  1366 
  • 8c Aspinall HC. Bickley JF. Dwyer JLM. Greeves N. Kelly RV. Steiner A. Organometallics  2000,  19:  5416 
  • 8d Di Bari L. Lelli M. Pintacuda G. Pescitelli G. Marchetti F. Salvadori P. J. Am. Chem. Soc.  2003,  125:  5549 
  • 8e Wooten AJ. Carroll PJ. Walsh PJ. Angew. Chem. Int. Ed.  2006,  45:  2549 
  • 9a Yoshikawa N. Yamada YMA. Das J. Sasai H. Shibasaki M. J. Am. Chem. Soc.  1999,  121:  4168 
  • 9b Yoshikawa N. Kumagai N. Matsunaga S. Moll G. Ohshima T. Suzuki T. Shibasaki M. J. Am. Chem. Soc.  2001,  123:  2466 
  • 9c Gnanadesikan V. Horiuchi Y. Ohshima T. Shibasaki M. J. Am. Chem. Soc.  2004,  126:  7782 
  • 10a Yamagiwa N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2003,  125:  16178 
  • 10b Yamagiwa N. Qin H. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2005,  127:  13419 
  • 11 Yamada K.-i. Harwood SJ. Gröger H. Shibasaki M. Angew. Chem. Int. Ed.  1999,  38:  3504 
  • 12 Trost BM. Science (Washington, D.C.)  1991,  254:  1471 
  • For recent reviews on the catalytic asymmetric nitroaldol reaction, see:
  • 13a Palomo C. Oiarbide M. Laso A. Eur. J. Org. Chem.  2007,  2561 
  • 13b Boruwa J. Gogoi N. Saikia PP. Barua NC. Tetrahedron: Asymmetry  2006,  17:  3315 
  • 13c Palomo C. Oiarbide M. Mielgo A. Angew. Chem. Int. Ed.  2004,  43:  5442 
  • 14a Christensen C. Juhl K. Jørgensen KA. Chem. Commun.  2001,  2222 
  • 14b Christensen C. Juhl K. Hazell RG. Jørgensen KA. J. Org. Chem.  2002,  67:  4875 
  • 14c Lu S.-F. Du D.-M. Zhang S.-W. Xu J. Tetrahedron: Asymmetry  2004,  15:  3433 
  • 14d Du D.-M. Lu S.-F. Fang T. Xu J. J. Org. Chem.  2005,  70:  3712 
  • 14e Choudary BM. Ranganath KVS. Pal U. Kantam ML. Sreedhar B. J. Am. Chem. Soc.  2005,  127:  13167 
  • 14f Li H. Wang B. Deng L. J. Am. Chem. Soc.  2006,  128:  732 
  • 14g Qin B. Xiao X. Liu X. Huang J. Wen Y. Feng X. J. Org. Chem.  2007,  72:  10302 
  • 14h Takada K. Takemura N. Cho K. Sohtome Y. Nagasawa K. Tetrahedron Lett.  2008,  49:  1623 
  • For exceptional examples using trifluoromethyl ketones as acceptors, see:
  • 15a Misumi Y. Bulman RA. Matsumoto K. Heterocycles  2002,  56:  599 
  • 15b Tur F. Saá JM. Org. Lett.  2007,  9:  5079 
  • 16 For the kinetic resolution of tertiary aldols via a retro-aldol reaction with a catalytic antibody, see: List B. Shabat D. Zhong G. Turner JM. Li A. Bui T. Anderson J. Lerner RA. Barbas CF. J. Am. Chem. Soc.  1999,  121:  7283 ; and references cited therein
  • For a recent general review on nonenzymatic kinetic resolution, see:
  • 17a Vedejs E. Jure M. Angew. Chem. Int. Ed.  2005,  44:  3974 
  • For examples of nonenzymatic kinetic resolution of tertiary alcohols, see:
  • 17b Angione MC. Miller SJ. Tetrahedron  2006,  62:  5254 ; and references cited therein
  • For reviews, see:
  • 18a Ding K. Du H. Yuan Y. Long J. Chem. Eur. J.  2004,  10:  2872 
  • 18b de Vries JG. Lefort L. Chem. Eur. J.  2006,  12:  4722 
  • For selected examples, see:
  • 18c Long J. Hu J. Shen X. Ji B. Ding K. J. Am. Chem. Soc.  2002,  124:  10 
  • 18d Reetz MT. Shell T. Meiswinkel A. Mehler G. Angew. Chem. Int. Ed.  2003,  42:  790 
  • 18e Peña D. Minnaard AJ. Boogers JAF. de Vries AHM. de Vries JG. Feringa BL. Org. Biomol. Chem.  2003,  1:  1087 
  • 19 Tosaki S.-y. Hara K. Gnanadesikan V. Morimoto H. Harada S. Sugita M. Yamagiwa N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  11776 
  • Ligand liability of related rare-earth-alkali metal heterobimetallic complexes was reported; see:
  • 20a Bari LD. Lelli M. Salvadori P. Chem. Eur. J.  2004,  10:  4594 
  • See also:
  • 20b Yamagiwa N. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2004,  43:  4493 
  • 20c Horiuchi Y. Gnanadesikan V. Ohshima T. Masu H. Katagiri K. Sei Y. Yamaguchi K. Shibasaki M. Chem. Eur. J.  2005,  11:  5195 
  • 21 For a review, see: Lebel H. Marcoux J. Molinaro C. Charette AB. Chem. Rev.  2003,  103:  977 
  • 22 Corey EJ. Chaykovsky M. J. Am. Chem. Soc.  1965,  87:  1353 
  • For the catalytic generation of chiral ylides, see:
  • 23a Aggarwal VK. Alonso E. Fang GY. Ferrara M. Hynd G. Porcelloni M. Angew. Chem. Int. Ed.  2001,  40:  1433 ; and references cited therein
  • 23b Papageorgiou CD. Cubillo de Dios MA. Ley SV. Gaunt MJ. Angew. Chem. Int. Ed.  2004,  43:  4641 
  • For the catalytic activation of electrophiles, see:
  • 24a Kunz RK. MacMillan DWC. J. Am. Chem. Soc.  2005,  127:  3240 
  • For similar works, see:
  • 24b Hartikka A. Arvidsson PI. J. Org. Chem.  2007,  72:  5874 
  • c Hartikka A. Slósarczyka AT. Arvidsson PI. Tetrahedron: Asymmetry  2007,  18:  1403 
  • For the synthesis of ligand 2c, see:
  • 25a Harada T. Tuyet TMT. Oku A. Org. Lett.  2000,  2:  1319 
  • For the utility of biphenyldiols, see:
  • 25b Kakei H. Tsuji R. Ohshima T. Morimoto H. Matsunaga S. Shibasaki M. Chem. Asian J.  2007,  2:  257 ; and references cited therein
  • 26 Kakei H. Sone T. Sohtome Y. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  13410 
  • For the utility of α,β-unsaturated N-acylpyrroles as an ester surrogate, see:
  • 27a Matsunaga S. Kinoshita T. Okada S. Shibasaki M. J. Am. Chem. Soc.  2004,  126:  7559 
  • 27b Matsunaga S. Qin H. Sugita M. Okada S. Kinoshita T. Yamagiwa N. Shibasaki M. Tetrahedron  2006,  62:  6630 ; and references cited therein
  • 28 For recent studies on the effects of alkali metals in REMB complexes, see: Wooten AJ. Carroll PJ. Walsh PJ. Org. Lett.  2007,  9:  3359 
  • For recent reviews on asymmetric cyanation reactions, see:
  • 31a Brunel JM. Holmes IP. Angew. Chem. Int. Ed.  2004,  43:  2752 
  • 31b North M. Tetrahedron: Asymmetry  2003,  14:  147 
  • 32a Yamagiwa N. Tian J. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2005,  127:  3413 
  • 32b Tian J. Yamagiwa N. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2002,  41:  3636 
  • For leading references for related one-pot catalytic asymmetric cyanation-protection sequences, see:
  • 33a Tian S.-K. Deng L. J. Am. Chem. Soc.  2001,  123:  6195 
  • 33b Belokon’ YN. Blacker AJ. Clutterbuck LA. North M. Org. Lett.  2003,  5:  4505 
  • 33c Baeza A. Casas J. Nájera C. Sansano JM. Saá JM. Angew. Chem. Int. Ed.  2003,  42:  3143 
  • 33d Lundgren S. Wingstrand E. Penhoat M. Moberg C. J. Am. Chem. Soc.  2005,  127:  11592 ; and references cited therein
  • Achiral phosphine oxides are also utilized as additives to modify the chiral environment as well as the reactivity of rare-earth-metal catalysts in asymmetric epoxidation reactions; see:
  • 34a Daikai K. Kamaura M. Inanaga J. Tetrahedron Lett.  1998,  39:  7321 
  • 34b Nemoto T. Ohshima T. Yamaguchi K. Shibasaki M. J. Am. Chem. Soc.  2001,  123:  2725 
  • 34c Kinoshita T. Okada S. Park S.-R. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2003,  42:  4680 
  • 34d Kino R. Daikai K. Kawanami T. Furuno H. Inanaga J. Org. Biomol. Chem.  2004,  2:  1822 
  • 34e Chen Z. Morimoto H. Matsunaga S. Shibasaki M. Synlett  2006,  3529 ; see also reference 25b
  • 35 Tian J. Yamagiwa N. Matsunaga S. Shibasaki M. Org. Lett.  2003,  5:  3021 
  • 36a Abiko Y. Yamagiwa N. Sugita M. Tian J. Matsunaga S. Shibasaki M. Synlett  2004,  2434 
  • 36b Yamagiwa N. Abiko Y. Sugita M. Tian J. Matsunaga S. Shibasaki M. Tetrahedron: Asymmetry  2006,  17:  566 
  • 37a Baeza A. Casas J. Nájera C. Sansano JM. Saá JM. Angew. Chem. Int. Ed.  2003,  42:  3143 
  • 37b Baeza A. Nájera C. Sansano JM. Saá JM. Chem. Eur. J.  2005,  11:  3849 
  • For the use of phosphine oxide to increase the nucleo-philicity of cyanide species generated from TMSCN in the catalytic asymmetric cyanosilylation reaction of aldehydes, see:
  • 38a Hamashima Y. Sawada D. Kanai M. Shibasaki M. J. Am. Chem. Soc.  1999,  121:  2641 
  • 38b Ryu DH. Corey EJ. J. Am. Chem. Soc.  2004,  126:  8106 
  • 39 Morimoto H. Lu G. Aoyama N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  9588 
  • For reviews on direct Mannich-type reactions, see:
  • 40a Marques MMB. Angew. Chem. Int. Ed.  2006,  45:  348 
  • 40b Córdova A. Acc. Chem. Res.  2004,  37:  102 
  • 40c Shibasaki M. Matsunaga S. J. Organomet. Chem.  2006,  691:  2089 
  • For general reviews on catalytic asymmetric Mannich-type reactions, see:
  • 40d Kobayashi S. Ueno M. In Comprehensive Asymmetric Catalysis   Suppl. 1:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 2003.  Chap. 29.5. p.143 
  • 40e Friestad GK. Mathies AK. Tetrahedron  2007,  63:  2541 
  • 41 For a review on La(OTf)3 in organic synthesis, see: Kobayashi S. Sugiura M. Kitagawa H. Lam WW.-L. Chem. Rev.  2002,  102:  2227 
  • For a review on the utility of rare-earth-metal (RE) triflate-pybox and/or halide-pybox complexes as chiral Lewis acids, see:
  • 42a Desimoni G. Faita G. Quadrelli P. Chem. Rev.  2003,  103:  3119 
  • For exceptional examples using a RE-Cl3/pybox complex as a bifunctional catalyst to generate a nucleophilic RE-cyanide species, see:
  • 42b Schaus SE. Jacobsen EN. Org. Lett.  2000,  2:  1001 
  • 42c Keith JM. Jacobsen EN. Org. Lett.  2004,  6:  153 
  • There are many excellent chiral catalysts for direct Mannich-type reactions with malonates, β-keto esters, and 1,3-diketones. For selected examples, see:
  • 43a Marigo M. Kjærsgaard A. Juhl K. Gathergood N. Jørgensen KA. Chem. Eur. J.  2003,  9:  2359 
  • 43b Uraguchi D. Terada M.
    J. Am. Chem. Soc.  2004,  126:  5356 
  • 43c Hamashima Y. Sasamoto N. Hotta D. Somei H. Umebayashi N. Sodeoka M. Angew. Chem. Int. Ed.  2005,  44:  1525 
  • 43d Lou S. Taoka BM. Ting A. Schaus SE. J. Am. Chem. Soc.  2005,  127:  11256 
  • 43e Song J. Wang Y. Deng L. J. Am. Chem. Soc.  2006,  128:  6048 
  • 43f Sasamoto N. Dubs C. Hamashima Y. Sodeoka M. J. Am. Chem. Soc.  2006,  128:  14010 
  • 43g Tillman AL. Ye J. Dixon DJ. Chem. Commun.  2006,  1191 ; for other examples, see the reviews in reference 40
  • For an example of a direct catalytic Mannich-type reaction with an α-alkyl-substituted ester equivalent donor in a racemic reaction, see:
  • 44a Saito S. Tsubogo T. Kobayashi S. Chem. Commun.  2007,  1236 
  • See also, direct Mannich-type reactions using ester equivalent donors without an α-alkyl substituent. Racemic reaction:
  • 44b Kumagai N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2004,  126:  13632 
  • Enantioselective reaction:
  • 44c Ricci A. Pettersen D. Bernardi L. Fini F. Fochi M. Herrera RP. Sgarzani V. Adv. Synth. Catal.  2007,  349:  1037 
  • 44d Yamaguchi A. Aoyama N. Matsunaga S. Shibasaki M. Org. Lett.  2007,  9:  3387 
  • 45 For N-(2-hydroxyacetyl)pyrrole as an ester equivalent donor, see: Harada S. Handa S. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2005,  44:  4365 
  • For the utility of trichloromethyl ketones and trichloromethyl carbinols, see:
  • 46a Corey EJ. Link JO.
    J. Am. Chem. Soc.  1992,  114:  1906 
  • 46b Corey EJ. Link JO. Tetrahedron Lett.  1992,  33:  3431 
  • 46c Fujisawa T. Ito T. Fujimoto K. Shimizu M. Wynberg H. Staring EGJ. Tetrahedron Lett.  1997,  38:  1593 
  • 46d Wang Z. Campagna S. Yang K. Xu G. Pierce ME. Fortunak JM. Confalone PN. J. Org. Chem.  2000,  65:  1889 
  • 46e Jiang B. Si Y.-G. Adv. Synth. Catal.  2004,  346:  669 
  • 46f Bejot R. Tisserand S. Reddy LM. Barma DK. Baati R. Falck JR. Mioskowski C. Angew. Chem. Int. Ed.  2005,  44:  2008 
  • 47 The utility of trichloromethyl ketones 17 as donors was first investigated in a racemic system; see: Morimoto H. Wiedemann SH. Yamaguchi A. Harada S. Chen Z. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2006,  45:  3146 
  • 48a Matsunaga S. Kumagai N. Harada S. Shibasaki M. J. Am. Chem. Soc.  2003,  125:  4712 
  • 48b Matsunaga S. Yoshida T. Morimoto H. Kumagai N. Shibasaki M.
    J. Am. Chem. Soc.  2004,  126:  8777 
  • 48c Yoshida T. Morimoto H. Kumagai N. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2005,  44:  3470 
  • 48d Matsunaga S. Sugita M. Yamagiwa N. Handa S. Yamaguchi A. Shibasaki M. Bull. Chem. Soc. Jpn.  2006,  79:  1906 
  • For the utility of N-heteroarylsulfonyl imines in asymmetric synthesis, see:
  • 49a González AS. G ómez Arrayás R. Carretero JC. Org. Lett.  2006,  8:  2977 ; and references cited therein
  • 49b Esquivias J. Gómez Arrayás R. Carretero JC. J. Am. Chem. Soc.  2007,  129:  1480 
  • 49c Nakamura S. Nakashima H. Sugimoto H. Shibata N. Toru T. Tetrahedron Lett.  2006,  47:  7599 
  • 49d Nakamura S. Nakashima H. Sugimoto H. Sano H. Hattori M. Shibata N. Toru T. Chem. Eur. J.  2008,  14:  2145 ; and references cited therein
  • 51 Handa S. Gnanadesikan V. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  4900 
  • For related attempts to develop bifunctional asymmetric catalysts using heterobimetallic Schiff base complexes, see:
  • 52a Annamalai V. DiMauro EF. Carroll PJ. Kozlowski MC. J. Org. Chem.  2003,  68:  1973 ; and references cited therein See also:
  • 52b Sammis GM. Danjo H. Jacobsen EN. J. Am. Chem. Soc.  2004,  126:  9928 
  • 52c Li W. Thakur SS. Chen S.-W. Shin C.-K. Kawthekar RB. Kim G.-J. Tetrahedron Lett.  2006,  47:  3453 ; and references cited therein
  • The structures of related heterobimetallic Cu/rare-earth metal/Schiff base complexes were unequivocally determined by X-ray crystallographic analysis; see:
  • 53a Koner R. Lee G.-H. Wang Y. Wei H.-H. Mohanta S. Eur. J. Inorg. Chem.  2005,  1500 
  • 53b Benelli C. Guerriero P. Tamburini S. Vigato PA. Mater. Chem. Phys.  1992,  31:  137 ; and references cited therein
  • 54 For a review on catalytic asymmetric nitro-Mannich reactions, see: Westermann B. Angew. Chem. Int. Ed.  2003,  42:  151 
  • For anti-selective catalytic asymmetric nitro-Mannich reactions with metal catalysts, see:
  • 55a Yamada K.-I. Moll G. Shibasaki M. Synlett  2001,  980 
  • 55b Knudsen KR. Risgaard T. Nishiwaki N. Gothelf KV. Jørgensen KA. J. Am. Chem. Soc.  2001,  123:  5843 ; and references cited therein
  • 55c Anderson JC. Howell GP. Lawrence RM. Wilson CS. J. Org. Chem.  2005,  70:  5665 
  • With thio-ureas, see:
  • 55d Yoon TP. Jacobsen EN. Angew. Chem. Int. Ed.  2005,  44:  466 
  • 55e Xu X. Furukawa T. Okino T. Miyabe H. Takemoto Y. Chem. Eur. J.  2006,  12:  466 
  • 55f Robak MT. Trincado M. Ellman JA. J. Am. Chem. Soc.  2007,  129:  15110 
  • With a chiral proton catalyst, see:
  • 55g Nugent BM. Yoder RA. Johnston JN. J. Am. Chem. Soc.  2004,  126:  3418 
  • With cinchona alkaloids, see:
  • 55h Palomo C. Oiarbide M. Laso A. López R. J. Am. Chem. Soc.  2005,  127:  17622 
  • For recent examples of chiral µ-oxo or µ-hydroxide multi-rare-earth-metal complexes, see:
  • 56a Kato N. Mita T. Kanai M. Therrien B. Kawano M. Yamaguchi K. Danjo H. Sei Y. Sato A. Furusho S. Shibasaki M.
    J. Am. Chem. Soc.  2006,  128:  6768 
  • 56b Wooten AJ. Salvi L. Carroll PJ. Walsh PJ. Adv. Synth. Catal.  2007,  349:  561 
  • For syn-selective direct catalytic asymmetric nitroaldol reactions, see:
  • 57a Sasai H. Tokunaga T. Watanabe S. Suzuki T. Itoh N. Shibasaki M. J. Org. Chem.  1995,  60:  7388 
  • 57b Sohtome Y. Hashimoto Y. Nagasawa K. Eur. J. Org. Chem.  2006,  2894 
  • 57c Sohtome Y. Takemura N. Takada K. Takagi R. Iguchi T. Nagasawa K. Chem. Asian J.  2007,  2:  1150 
  • 57d Arai T. Watanabe M. Yanagisawa A. Org. Lett.  2007,  9:  3595 
  • For anti-selective catalytic asymmetric nitroaldol reactions using silyl nitronates, see:
  • 58a Ooi T. Doda K. Maruoka K. J. Am. Chem. Soc.  2003,  125:  2054 
  • 58b Risgaard T. Gothelf KV. Jørgensen KA. Org. Biomol. Chem.  2003,  1:  153 
  • For anti-selective direct catalytic asymmetric nitroaldol reactions, see:
  • 59a Uraguchi D. Sakaki S. Ooi T. J. Am. Chem. Soc.  2007,  129:  12392 
  • 59b Purkarthofer T. Gruber K. Gruber-Khadjawi M. Waich K. Skranc W. Mink D. Griengl H. Angew. Chem. Int. Ed.  2006,  45:  3454 
  • 59c Nitabaru T. Kumagai N. Shibasaki M. Tetrahedron Lett.  2008,  49:  272 
  • 60 Handa S. Nagawa K. Sohtome Y. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2008,  47:  3230 
  • 61 Yamazaki N, Fukuda Y, Shibazaki Y, Niizato T, Kosugi I, and Yoshioka S. inventors; US Patent  5,449,694.  ; and references cited therein
  • 62 Tanaka N, and Tamai T. inventors; JP Patent  JP2002-64840.  ; and references cited therein
  • 63 Chen Z. Morimoto H. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2008,  130:  2170 
  • 64a Knudsen KR. Jørgensen KA. Org. Biomol. Chem.  2005,  3:  1362 
  • 64b Singh A. Yoder RA. Shen B. Johnston JN. J. Am. Chem. Soc.  2007,  129:  3466 
  • 65 For a review on the synthesis and utility of α,β-diamino acids, see: Viso A. Fernández de la Pradilla R. García A. Flores A. Chem. Rev.  2005,  105:  3167 
  • 66a Negoro T. Murata M. Ueda S. Fujitani B. Ono Y. Kuromiya A. Suzuki K. Matsumoto J.-I. J. Med. Chem.  1998,  41:  4118 
  • 66b Kurono M. Fujiwara I. Yoshida K. Biochemistry  2001,  40:  8216 
  • 66c Bril V. Buchanan RA. Diabetes Care  2004,  27:  2369 
  • 66d Kurono M. Fujii A. Murata M. Fujitani B. Negoro T. Biochem. Pharmacol.  2006,  71:  338 
  • 66e Giannoukakis N. Curr. Opin. Invest. Drugs  2006,  7:  916 
  • 67a Diels O. Justus Liebigs Ann. Chem.  1922,  429:  1 
  • 67b Diels O. Behncke H. Ber. Dtsch. Chem. Ges.  1924,  57:  653 
  • 68a Marigo M. Juhl K. Jørgensen KA. Angew. Chem. Int. Ed.  2003,  42:  1367 
  • 68b Ma S. Jiao N. Zheng Z. Ma Z. Lu Z. Ye L. Deng Y. Chen G. Org. Lett.  2004,  6:  2193 
  • 68c Foltz C. Stecker B. Marconi G. Bellemin-Laponnaz S. Wadepohl H. Gabe LH. Chem. Commun.  2005,  5115 
  • 68d Kim YK. Kim DY. Tetrahedron Lett.  2006,  47:  4565 
  • 68e Comelles J. Pericas . Moreno-Mañas M. Vallribera A. Drudis-Solé G. Lledos A. Parella T. Roglans A. García-Granda S. Roces-Fernández L. J. Org. Chem.  2007,  72:  2077 
  • 69a Sabby S. Bella M. Jørgensen KA. J. Am. Chem. Soc.  2004,  126:  8120 
  • 69b Pihko PM. Pohjakallio A. Synlett  2004,  2115 
  • 69c Liu X. Li H. Deng L. Org. Lett.  2005,  7:  167 
  • 69d Xu X. Yabuta T. Yuan P. Takemoto Y. Synlett  2006,  137 
  • 69e Terada M. Nakano M. Ube H. J. Am. Chem. Soc.  2006,  128:  16044 
  • 70a Mashiko T. Hara K. Tanaka D. Fujiwara Y. Kumagai N. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  11342 
  • 70b

    Mashiko T., Kumagai N., Shibasaki M.; manuscript in preparation.

29

A related, dual control mechanism has been proposed by MacMillan, see reference 24a. See also, reference 10b for a related mechanism.

30

Coordination of a seventh ligand, such as H2O, to the rare-earth-metal center was observed for rare-earth metals with a relatively large ionic radius, such as La, Pr, Eu; see references 8b, 8c, and 8e. Salvadori and co-workers reported different properties for Yb complexes; see reference 8d.

50

Trichloromethyl carbinols were stereoselectively converted into azetidinecarboxylic acids; see reference 47.