Abstract
Recent advances from our group in the design and applications of multimetallic bifunctional
asymmetric catalysts are described. Suitable design of chiral ligands and selection
of metals were important to realize cooperative bimetallic catalysis. In this account,
our strategies for constructing flexible and diverse chiral environments in multimetallic
complexes for the rapid optimization of targeted reactions, such as tertiary nitroaldol
kinetic resolution, cyclopropanation of electron-deficient olefins, cyano-ethoxycarbonylation
of aldehydes, direct Mannich-type reactions, the nitro-Mannich reaction, the anti -selective nitroaldol reaction, and amination, are discussed in detail.
1 Introduction
2 Heterobimetallic Rare-Earth-Alkali Metal-BINOL Complexes
2.1 Background
2.2 Catalytic Kinetic Resolution of Tertiary Nitroaldols
2.3 Catalytic Asymmetric Cyclopropanation of Enones
2.4 Catalytic Asymmetric Cyano-ethoxycarbonylation
3 La Aryloxide/Li Aryloxide/pybox Complexes for Direct Catalytic Asymmetric Mannich-type
Reactions
4 Heterobimetallic Transition Metal/Rare-Earth Metal/Dinucleating Schiff Base Complexes
4.1 syn -Selective Nitro-Mannich-type Reaction
4.2 anti -Selective Nitroaldol Reaction
5 Homobimetallic Nickel/Dinucleating Schiff Base Complex
6 Rare-Earth Metal/Amide Complexes for Catalytic Asymmetric Amination
7 Summary
Key words
asymmetric catalysis - asymmetric synthesis - bifunctional catalysis - rare-earth
metals - Lewis acids
References
For general reviews, see:
<A NAME="RA48108ST-1A">1a </A>
New Frontiers in Asymmetric Catalysis
Mikami K.
Lautens M.
Wiley & Sons;
Hoboken NJ:
2007.
<A NAME="RA48108ST-1B">1b </A>
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
<A NAME="RA48108ST-1C">1c </A>
Comprehensive Asymmetric Catalysis
Suppl. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
2003.
<A NAME="RA48108ST-2">2 </A> For a review, see:
Machajewski TD.
Wang C.-H.
Angew. Chem. Int. Ed.
2000,
39:
1352
For recent reviews from our group, see:
<A NAME="RA48108ST-3A">3a </A>
Kanai M.
Kato N.
Ichikawa E.
Shibasaki M.
Synlett
2005,
1491
<A NAME="RA48108ST-3B">3b </A>
Shibasaki M.
Kanai M.
Matsunaga S.
Aldrichimica Acta
2006,
39:
31
<A NAME="RA48108ST-3C">3c </A>
Shibasaki M.
Matsunaga S.
Chem. Soc. Rev.
2006,
35:
269
<A NAME="RA48108ST-3D">3d </A>
Shibasaki M.
Kanai M.
Org. Biomol. Chem.
2007,
5:
2027
<A NAME="RA48108ST-3E">3e </A>
Matsunaga S.
Shibasaki M.
Bull. Chem. Soc. Jpn.
2008,
81:
60
For recent general reviews on bifunctional asymmetric catalysts, see:
<A NAME="RA48108ST-4A">4a </A>
Yamamoto H.
Futatsugi K.
Angew. Chem. Int. Ed.
2005,
44:
1924
<A NAME="RA48108ST-4B">4b </A>
Ma J.-A.
Cahard D.
Angew. Chem. Int. Ed.
2004,
43:
4566
<A NAME="RA48108ST-4C">4c </A>
Multimetallic Catalysis in Organic Synthesis
Shibasaki M.
Yamamoto Y.
Wiley-VCH;
New York:
2004.
For recent reviews on bifunctional organocatalysis, see:
<A NAME="RA48108ST-5A">5a </A>
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
<A NAME="RA48108ST-5B">5b </A> Special issue devoted to ‘Asymmetric Organocatalysis’ (Houk, K. N.; List, B.,
Eds.): Acc. Chem. Res.
2004,
37:
487-631
<A NAME="RA48108ST-5C">5c </A>
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
Wiley-VCH;
New York:
2005.
<A NAME="RA48108ST-5D">5d </A>
Taylor MS.
Jacobsen EN.
Angew. Chem. Int. Ed.
2006,
45:
1520
<A NAME="RA48108ST-5E">5e </A>
Marcelli T.
van Maarseveen JH.
Hiemstra H.
Angew. Chem. Int. Ed.
2006,
45:
7496
<A NAME="RA48108ST-5F">5f </A>
Connon SJ.
Chem. Eur. J.
2006,
12:
5418
<A NAME="RA48108ST-5G">5g </A>
Lelais G.
MacMillan DWC.
Aldrichimica Acta
2006,
39:
79
<A NAME="RA48108ST-5H">5h </A>
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
<A NAME="RA48108ST-5I">5i </A>
Barbas CF.
Angew. Chem. Int. Ed.
2008,
47:
42
<A NAME="RA48108ST-5J">5j </A>
Enantioselective Organocatalysis, Reactions and Experimental Procedures
Dalko PI.
Wiley-VCH;
Weinheim:
2007.
<A NAME="RA48108ST-6A">6a </A>
Sasai H.
Arai T.
Satow Y.
Houk KN.
Shibasaki M.
J. Am. Chem. Soc.
1995,
117:
6194 ; and references cited therein
<A NAME="RA48108ST-6B">6b </A>
Sasai H.
Suzuki T.
Itoh N.
Tanaka K.
Date T.
Okamura K.
Shibasaki M.
J. Am. Chem. Soc.
1993,
115:
10372
For reviews on early work, see:
<A NAME="RA48108ST-7A">7a </A>
Shibasaki M.
Sasai H.
Arai T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1236
<A NAME="RA48108ST-7B">7b </A>
Shibasaki M.
Yoshikawa N.
Chem. Rev.
2002,
102:
2187
<A NAME="RA48108ST-8A">8a </A>
Aspinall HC.
Chem. Rev.
2002,
102:
1807
<A NAME="RA48108ST-8B">8b </A>
Aspinall HC.
Dwyer JLM.
Greeves N.
Steiner A.
Organometallics
1999,
18:
1366
<A NAME="RA48108ST-8C">8c </A>
Aspinall HC.
Bickley JF.
Dwyer JLM.
Greeves N.
Kelly RV.
Steiner A.
Organometallics
2000,
19:
5416
<A NAME="RA48108ST-8D">8d </A>
Di Bari L.
Lelli M.
Pintacuda G.
Pescitelli G.
Marchetti F.
Salvadori P.
J. Am. Chem. Soc.
2003,
125:
5549
<A NAME="RA48108ST-8E">8e </A>
Wooten AJ.
Carroll PJ.
Walsh PJ.
Angew. Chem. Int. Ed.
2006,
45:
2549
<A NAME="RA48108ST-9A">9a </A>
Yoshikawa N.
Yamada YMA.
Das J.
Sasai H.
Shibasaki M.
J. Am. Chem. Soc.
1999,
121:
4168
<A NAME="RA48108ST-9B">9b </A>
Yoshikawa N.
Kumagai N.
Matsunaga S.
Moll G.
Ohshima T.
Suzuki T.
Shibasaki M.
J. Am. Chem. Soc.
2001,
123:
2466
<A NAME="RA48108ST-9C">9c </A>
Gnanadesikan V.
Horiuchi Y.
Ohshima T.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
7782
<A NAME="RA48108ST-10A">10a </A>
Yamagiwa N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
16178
<A NAME="RA48108ST-10B">10b </A>
Yamagiwa N.
Qin H.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
13419
<A NAME="RA48108ST-11">11 </A>
Yamada K.-i.
Harwood SJ.
Gröger H.
Shibasaki M.
Angew. Chem. Int. Ed.
1999,
38:
3504
<A NAME="RA48108ST-12">12 </A>
Trost BM.
Science (Washington, D.C.)
1991,
254:
1471
For recent reviews on the catalytic asymmetric nitroaldol reaction, see:
<A NAME="RA48108ST-13A">13a </A>
Palomo C.
Oiarbide M.
Laso A.
Eur. J. Org. Chem.
2007,
2561
<A NAME="RA48108ST-13B">13b </A>
Boruwa J.
Gogoi N.
Saikia PP.
Barua NC.
Tetrahedron: Asymmetry
2006,
17:
3315
<A NAME="RA48108ST-13C">13c </A>
Palomo C.
Oiarbide M.
Mielgo A.
Angew. Chem. Int. Ed.
2004,
43:
5442
<A NAME="RA48108ST-14A">14a </A>
Christensen C.
Juhl K.
Jørgensen KA.
Chem. Commun.
2001,
2222
<A NAME="RA48108ST-14B">14b </A>
Christensen C.
Juhl K.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2002,
67:
4875
<A NAME="RA48108ST-14C">14c </A>
Lu S.-F.
Du D.-M.
Zhang S.-W.
Xu J.
Tetrahedron: Asymmetry
2004,
15:
3433
<A NAME="RA48108ST-14D">14d </A>
Du D.-M.
Lu S.-F.
Fang T.
Xu J.
J. Org. Chem.
2005,
70:
3712
<A NAME="RA48108ST-14E">14e </A>
Choudary BM.
Ranganath KVS.
Pal U.
Kantam ML.
Sreedhar B.
J. Am. Chem. Soc.
2005,
127:
13167
<A NAME="RA48108ST-14F">14f </A>
Li H.
Wang B.
Deng L.
J. Am. Chem. Soc.
2006,
128:
732
<A NAME="RA48108ST-14G">14g </A>
Qin B.
Xiao X.
Liu X.
Huang J.
Wen Y.
Feng X.
J. Org. Chem.
2007,
72:
10302
<A NAME="RA48108ST-14H">14h </A>
Takada K.
Takemura N.
Cho K.
Sohtome Y.
Nagasawa K.
Tetrahedron Lett.
2008,
49:
1623
For exceptional examples using trifluoromethyl ketones as acceptors, see:
<A NAME="RA48108ST-15A">15a </A>
Misumi Y.
Bulman RA.
Matsumoto K.
Heterocycles
2002,
56:
599
<A NAME="RA48108ST-15B">15b </A>
Tur F.
Saá JM.
Org. Lett.
2007,
9:
5079
<A NAME="RA48108ST-16">16 </A> For the kinetic resolution of tertiary aldols via a retro-aldol reaction with
a catalytic antibody, see:
List B.
Shabat D.
Zhong G.
Turner JM.
Li A.
Bui T.
Anderson J.
Lerner RA.
Barbas CF.
J. Am. Chem. Soc.
1999,
121:
7283 ; and references cited therein
For a recent general review on nonenzymatic kinetic resolution, see:
<A NAME="RA48108ST-17A">17a </A>
Vedejs E.
Jure M.
Angew. Chem. Int. Ed.
2005,
44:
3974
For examples of nonenzymatic kinetic resolution of tertiary alcohols, see:
<A NAME="RA48108ST-17B">17b </A>
Angione MC.
Miller SJ.
Tetrahedron
2006,
62:
5254 ; and references cited therein
For reviews, see:
<A NAME="RA48108ST-18A">18a </A>
Ding K.
Du H.
Yuan Y.
Long J.
Chem. Eur. J.
2004,
10:
2872
<A NAME="RA48108ST-18B">18b </A>
de Vries JG.
Lefort L.
Chem. Eur. J.
2006,
12:
4722
For selected examples, see:
<A NAME="RA48108ST-18C">18c </A>
Long J.
Hu J.
Shen X.
Ji B.
Ding K.
J. Am. Chem. Soc.
2002,
124:
10
<A NAME="RA48108ST-18D">18d </A>
Reetz MT.
Shell T.
Meiswinkel A.
Mehler G.
Angew. Chem. Int. Ed.
2003,
42:
790
<A NAME="RA48108ST-18E">18e </A>
Peña D.
Minnaard AJ.
Boogers JAF.
de Vries AHM.
de Vries JG.
Feringa BL.
Org. Biomol. Chem.
2003,
1:
1087
<A NAME="RA48108ST-19">19 </A>
Tosaki S.-y.
Hara K.
Gnanadesikan V.
Morimoto H.
Harada S.
Sugita M.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2006,
128:
11776
Ligand liability of related rare-earth-alkali metal heterobimetallic complexes was
reported; see:
<A NAME="RA48108ST-20A">20a </A>
Bari LD.
Lelli M.
Salvadori P.
Chem. Eur. J.
2004,
10:
4594
See also:
<A NAME="RA48108ST-20B">20b </A>
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2004,
43:
4493
<A NAME="RA48108ST-20C">20c </A>
Horiuchi Y.
Gnanadesikan V.
Ohshima T.
Masu H.
Katagiri K.
Sei Y.
Yamaguchi K.
Shibasaki M.
Chem. Eur. J.
2005,
11:
5195
<A NAME="RA48108ST-21">21 </A> For a review, see:
Lebel H.
Marcoux J.
Molinaro C.
Charette AB.
Chem. Rev.
2003,
103:
977
<A NAME="RA48108ST-22">22 </A>
Corey EJ.
Chaykovsky M.
J. Am. Chem. Soc.
1965,
87:
1353
For the catalytic generation of chiral ylides, see:
<A NAME="RA48108ST-23A">23a </A>
Aggarwal VK.
Alonso E.
Fang GY.
Ferrara M.
Hynd G.
Porcelloni M.
Angew. Chem. Int. Ed.
2001,
40:
1433 ; and references cited therein
<A NAME="RA48108ST-23B">23b </A>
Papageorgiou CD.
Cubillo de Dios MA.
Ley SV.
Gaunt MJ.
Angew. Chem. Int. Ed.
2004,
43:
4641
For the catalytic activation of electrophiles, see:
<A NAME="RA48108ST-24A">24a </A>
Kunz RK.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
3240
For similar works, see:
<A NAME="RA48108ST-24B">24b </A>
Hartikka A.
Arvidsson PI.
J. Org. Chem.
2007,
72:
5874
<A NAME="RA48108ST24-C">c </A>
Hartikka A.
Slósarczyka AT.
Arvidsson PI.
Tetrahedron: Asymmetry
2007,
18:
1403
For the synthesis of ligand 2c , see:
<A NAME="RA48108ST-25A">25a </A>
Harada T.
Tuyet TMT.
Oku A.
Org. Lett.
2000,
2:
1319
For the utility of biphenyldiols, see:
<A NAME="RA48108ST-25B">25b </A>
Kakei H.
Tsuji R.
Ohshima T.
Morimoto H.
Matsunaga S.
Shibasaki M.
Chem. Asian J.
2007,
2:
257 ; and references cited therein
<A NAME="RA48108ST-26">26 </A>
Kakei H.
Sone T.
Sohtome Y.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2007,
129:
13410
For the utility of α,β-unsaturated N -acylpyrroles as an ester surrogate, see:
<A NAME="RA48108ST-27A">27a </A>
Matsunaga S.
Kinoshita T.
Okada S.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
7559
<A NAME="RA48108ST-27B">27b </A>
Matsunaga S.
Qin H.
Sugita M.
Okada S.
Kinoshita T.
Yamagiwa N.
Shibasaki M.
Tetrahedron
2006,
62:
6630 ; and references cited therein
<A NAME="RA48108ST-28">28 </A> For recent studies on the effects of alkali metals in REMB complexes, see:
Wooten AJ.
Carroll PJ.
Walsh PJ.
Org. Lett.
2007,
9:
3359
<A NAME="RA48108ST-29">29 </A>
A related, dual control mechanism has been proposed by MacMillan, see reference 24a.
See also, reference 10b for a related mechanism.
<A NAME="RA48108ST-30">30 </A>
Coordination of a seventh ligand, such as H2 O, to the rare-earth-metal center was observed for rare-earth metals with a relatively
large ionic radius, such as La, Pr, Eu; see references 8b, 8c, and 8e. Salvadori and
co-workers reported different properties for Yb complexes; see reference 8d.
For recent reviews on asymmetric cyanation reactions, see:
<A NAME="RA48108ST-31A">31a </A>
Brunel JM.
Holmes IP.
Angew. Chem. Int. Ed.
2004,
43:
2752
<A NAME="RA48108ST-31B">31b </A>
North M.
Tetrahedron: Asymmetry
2003,
14:
147
<A NAME="RA48108ST-32A">32a </A>
Yamagiwa N.
Tian J.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
3413
<A NAME="RA48108ST-32B">32b </A>
Tian J.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2002,
41:
3636
For leading references for related one-pot catalytic asymmetric cyanation-protection
sequences, see:
<A NAME="RA48108ST-33A">33a </A>
Tian S.-K.
Deng L.
J. Am. Chem. Soc.
2001,
123:
6195
<A NAME="RA48108ST-33B">33b </A>
Belokon’ YN.
Blacker AJ.
Clutterbuck LA.
North M.
Org. Lett.
2003,
5:
4505
<A NAME="RA48108ST-33C">33c </A>
Baeza A.
Casas J.
Nájera C.
Sansano JM.
Saá JM.
Angew. Chem. Int. Ed.
2003,
42:
3143
<A NAME="RA48108ST-33D">33d </A>
Lundgren S.
Wingstrand E.
Penhoat M.
Moberg C.
J. Am. Chem. Soc.
2005,
127:
11592 ; and references cited therein
Achiral phosphine oxides are also utilized as additives to modify the chiral environment
as well as the reactivity of rare-earth-metal catalysts in asymmetric epoxidation
reactions; see:
<A NAME="RA48108ST-34A">34a </A>
Daikai K.
Kamaura M.
Inanaga J.
Tetrahedron Lett.
1998,
39:
7321
<A NAME="RA48108ST-34B">34b </A>
Nemoto T.
Ohshima T.
Yamaguchi K.
Shibasaki M.
J. Am. Chem. Soc.
2001,
123:
2725
<A NAME="RA48108ST-34C">34c </A>
Kinoshita T.
Okada S.
Park
S.-R.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2003,
42:
4680
<A NAME="RA48108ST-34D">34d </A>
Kino R.
Daikai K.
Kawanami T.
Furuno H.
Inanaga J.
Org. Biomol. Chem.
2004,
2:
1822
<A NAME="RA48108ST-34E">34e </A>
Chen Z.
Morimoto H.
Matsunaga S.
Shibasaki M.
Synlett
2006,
3529 ; see also reference 25b
<A NAME="RA48108ST-35">35 </A>
Tian J.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Org. Lett.
2003,
5:
3021
<A NAME="RA48108ST-36A">36a </A>
Abiko Y.
Yamagiwa N.
Sugita M.
Tian J.
Matsunaga S.
Shibasaki M.
Synlett
2004,
2434
<A NAME="RA48108ST-36B">36b </A>
Yamagiwa N.
Abiko Y.
Sugita M.
Tian J.
Matsunaga S.
Shibasaki M.
Tetrahedron: Asymmetry
2006,
17:
566
<A NAME="RA48108ST-37A">37a </A>
Baeza A.
Casas J.
Nájera C.
Sansano JM.
Saá JM.
Angew. Chem. Int. Ed.
2003,
42:
3143
<A NAME="RA48108ST-37B">37b </A>
Baeza A.
Nájera C.
Sansano JM.
Saá JM.
Chem. Eur. J.
2005,
11:
3849
For the use of phosphine oxide to increase the nucleo-philicity of cyanide species
generated from TMSCN in the catalytic asymmetric cyanosilylation reaction of aldehydes,
see:
<A NAME="RA48108ST-38A">38a </A>
Hamashima Y.
Sawada D.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
1999,
121:
2641
<A NAME="RA48108ST-38B">38b </A>
Ryu DH.
Corey EJ.
J. Am. Chem. Soc.
2004,
126:
8106
<A NAME="RA48108ST-39">39 </A>
Morimoto H.
Lu G.
Aoyama N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2007,
129:
9588
For reviews on direct Mannich-type reactions, see:
<A NAME="RA48108ST-40A">40a </A>
Marques MMB.
Angew. Chem. Int. Ed.
2006,
45:
348
<A NAME="RA48108ST-40B">40b </A>
Córdova A.
Acc. Chem. Res.
2004,
37:
102
<A NAME="RA48108ST-40C">40c </A>
Shibasaki M.
Matsunaga S.
J. Organomet. Chem.
2006,
691:
2089
For general reviews on catalytic asymmetric Mannich-type reactions, see:
<A NAME="RA48108ST-40D">40d </A>
Kobayashi S.
Ueno M. In Comprehensive Asymmetric Catalysis
Suppl. 1:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
2003.
Chap. 29.5.
p.143
<A NAME="RA48108ST-40E">40e </A>
Friestad GK.
Mathies AK.
Tetrahedron
2007,
63:
2541
<A NAME="RA48108ST-41">41 </A> For a review on La(OTf)3 in organic synthesis, see:
Kobayashi S.
Sugiura M.
Kitagawa H.
Lam WW.-L.
Chem. Rev.
2002,
102:
2227
For a review on the utility of rare-earth-metal (RE) triflate-pybox and/or halide-pybox
complexes as chiral Lewis acids, see:
<A NAME="RA48108ST-42A">42a </A>
Desimoni G.
Faita G.
Quadrelli P.
Chem. Rev.
2003,
103:
3119
For exceptional examples using a RE-Cl3 /pybox complex as a bifunctional catalyst to generate a nucleophilic RE-cyanide species,
see:
<A NAME="RA48108ST-42B">42b </A>
Schaus SE.
Jacobsen EN.
Org. Lett.
2000,
2:
1001
<A NAME="RA48108ST-42C">42c </A>
Keith JM.
Jacobsen EN.
Org. Lett.
2004,
6:
153
There are many excellent chiral catalysts for direct Mannich-type reactions with malonates,
β-keto esters, and 1,3-diketones. For selected examples, see:
<A NAME="RA48108ST-43A">43a </A>
Marigo M.
Kjærsgaard A.
Juhl K.
Gathergood N.
Jørgensen KA.
Chem. Eur. J.
2003,
9:
2359
<A NAME="RA48108ST-43B">43b </A>
Uraguchi D.
Terada M.
J. Am. Chem. Soc.
2004,
126:
5356
<A NAME="RA48108ST-43C">43c </A>
Hamashima Y.
Sasamoto N.
Hotta D.
Somei H.
Umebayashi N.
Sodeoka M.
Angew. Chem. Int. Ed.
2005,
44:
1525
<A NAME="RA48108ST-43D">43d </A>
Lou S.
Taoka BM.
Ting A.
Schaus SE.
J. Am. Chem. Soc.
2005,
127:
11256
<A NAME="RA48108ST-43E">43e </A>
Song J.
Wang Y.
Deng L.
J. Am. Chem. Soc.
2006,
128:
6048
<A NAME="RA48108ST-43F">43f </A>
Sasamoto N.
Dubs C.
Hamashima Y.
Sodeoka M.
J. Am. Chem. Soc.
2006,
128:
14010
<A NAME="RA48108ST-43G">43g </A>
Tillman AL.
Ye J.
Dixon DJ.
Chem. Commun.
2006,
1191 ; for other examples, see the reviews in reference 40
For an example of a direct catalytic Mannich-type reaction with an α-alkyl-substituted
ester equivalent donor in a racemic reaction, see:
<A NAME="RA48108ST-44A">44a </A>
Saito S.
Tsubogo T.
Kobayashi S.
Chem. Commun.
2007,
1236
See also, direct Mannich-type reactions using ester equivalent donors without an α-alkyl
substituent. Racemic reaction:
<A NAME="RA48108ST-44B">44b </A>
Kumagai N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
13632
Enantioselective reaction:
<A NAME="RA48108ST-44C">44c </A>
Ricci A.
Pettersen D.
Bernardi L.
Fini F.
Fochi M.
Herrera RP.
Sgarzani V.
Adv. Synth. Catal.
2007,
349:
1037
<A NAME="RA48108ST-44D">44d </A>
Yamaguchi A.
Aoyama N.
Matsunaga S.
Shibasaki M.
Org. Lett.
2007,
9:
3387
<A NAME="RA48108ST-45">45 </A> For N -(2-hydroxyacetyl)pyrrole as an ester equivalent donor, see:
Harada S.
Handa S.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2005,
44:
4365
For the utility of trichloromethyl ketones and trichloromethyl carbinols, see:
<A NAME="RA48108ST-46A">46a </A>
Corey EJ.
Link JO.
J. Am. Chem. Soc.
1992,
114:
1906
<A NAME="RA48108ST-46B">46b </A>
Corey EJ.
Link JO.
Tetrahedron Lett.
1992,
33:
3431
<A NAME="RA48108ST-46C">46c </A>
Fujisawa T.
Ito T.
Fujimoto K.
Shimizu M.
Wynberg H.
Staring EGJ.
Tetrahedron Lett.
1997,
38:
1593
<A NAME="RA48108ST-46D">46d </A>
Wang Z.
Campagna S.
Yang K.
Xu G.
Pierce ME.
Fortunak JM.
Confalone PN.
J. Org. Chem.
2000,
65:
1889
<A NAME="RA48108ST-46E">46e </A>
Jiang B.
Si Y.-G.
Adv. Synth. Catal.
2004,
346:
669
<A NAME="RA48108ST-46F">46f </A>
Bejot R.
Tisserand S.
Reddy LM.
Barma DK.
Baati R.
Falck JR.
Mioskowski C.
Angew. Chem. Int. Ed.
2005,
44:
2008
<A NAME="RA48108ST-47">47 </A> The utility of trichloromethyl ketones 17 as donors was first investigated in a racemic system; see:
Morimoto H.
Wiedemann SH.
Yamaguchi A.
Harada S.
Chen Z.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2006,
45:
3146
<A NAME="RA48108ST-48A">48a </A>
Matsunaga S.
Kumagai N.
Harada S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
4712
<A NAME="RA48108ST-48B">48b </A>
Matsunaga S.
Yoshida T.
Morimoto H.
Kumagai N.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
8777
<A NAME="RA48108ST-48C">48c </A>
Yoshida T.
Morimoto H.
Kumagai N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2005,
44:
3470
<A NAME="RA48108ST-48D">48d </A>
Matsunaga S.
Sugita M.
Yamagiwa N.
Handa S.
Yamaguchi A.
Shibasaki M.
Bull. Chem. Soc. Jpn.
2006,
79:
1906
For the utility of N -heteroarylsulfonyl imines in asymmetric synthesis, see:
<A NAME="RA48108ST-49A">49a </A>
González AS.
G ómez Arrayás R.
Carretero JC.
Org. Lett.
2006,
8:
2977 ; and references cited therein
<A NAME="RA48108ST-49B">49b </A>
Esquivias J.
Gómez Arrayás R.
Carretero JC.
J. Am. Chem. Soc.
2007,
129:
1480
<A NAME="RA48108ST-49C">49c </A>
Nakamura S.
Nakashima H.
Sugimoto H.
Shibata N.
Toru T.
Tetrahedron Lett.
2006,
47:
7599
<A NAME="RA48108ST-49D">49d </A>
Nakamura S.
Nakashima H.
Sugimoto H.
Sano H.
Hattori M.
Shibata N.
Toru T.
Chem. Eur. J.
2008,
14:
2145 ; and references cited therein
<A NAME="RA48108ST-50">50 </A>
Trichloromethyl carbinols were stereoselectively converted into azetidinecarboxylic
acids; see reference 47.
<A NAME="RA48108ST-51">51 </A>
Handa S.
Gnanadesikan V.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2007,
129:
4900
For related attempts to develop bifunctional asymmetric catalysts using heterobimetallic
Schiff base complexes, see:
<A NAME="RA48108ST-52A">52a </A>
Annamalai V.
DiMauro EF.
Carroll PJ.
Kozlowski MC.
J. Org. Chem.
2003,
68:
1973 ; and references cited therein See also:
<A NAME="RA48108ST-52B">52b </A>
Sammis GM.
Danjo H.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
9928
<A NAME="RA48108ST-52C">52c </A>
Li W.
Thakur SS.
Chen S.-W.
Shin C.-K.
Kawthekar RB.
Kim G.-J.
Tetrahedron Lett.
2006,
47:
3453 ; and references cited therein
The structures of related heterobimetallic Cu/rare-earth metal/Schiff base complexes
were unequivocally determined by X-ray crystallographic analysis; see:
<A NAME="RA48108ST-53A">53a </A>
Koner R.
Lee G.-H.
Wang Y.
Wei H.-H.
Mohanta S.
Eur. J. Inorg. Chem.
2005,
1500
<A NAME="RA48108ST-53B">53b </A>
Benelli C.
Guerriero P.
Tamburini S.
Vigato PA.
Mater. Chem. Phys.
1992,
31:
137 ; and references cited therein
<A NAME="RA48108ST-54">54 </A> For a review on catalytic asymmetric nitro-Mannich reactions, see:
Westermann B.
Angew. Chem. Int. Ed.
2003,
42:
151
For anti -selective catalytic asymmetric nitro-Mannich reactions with metal catalysts, see:
<A NAME="RA48108ST-55A">55a </A>
Yamada K.-I.
Moll G.
Shibasaki M.
Synlett
2001,
980
<A NAME="RA48108ST-55B">55b </A>
Knudsen KR.
Risgaard T.
Nishiwaki N.
Gothelf KV.
Jørgensen KA.
J. Am. Chem. Soc.
2001,
123:
5843 ; and references cited therein
<A NAME="RA48108ST-55C">55c </A>
Anderson JC.
Howell GP.
Lawrence RM.
Wilson CS.
J. Org. Chem.
2005,
70:
5665
With thio-ureas, see:
<A NAME="RA48108ST-55D">55d </A>
Yoon TP.
Jacobsen EN.
Angew. Chem. Int. Ed.
2005,
44:
466
<A NAME="RA48108ST-55E">55e </A>
Xu X.
Furukawa T.
Okino T.
Miyabe H.
Takemoto Y.
Chem. Eur. J.
2006,
12:
466
<A NAME="RA48108ST-55F">55f </A>
Robak MT.
Trincado M.
Ellman JA.
J. Am. Chem. Soc.
2007,
129:
15110
With a chiral proton catalyst, see:
<A NAME="RA48108ST-55G">55g </A>
Nugent BM.
Yoder RA.
Johnston JN.
J. Am. Chem. Soc.
2004,
126:
3418
With cinchona alkaloids, see:
<A NAME="RA48108ST-55H">55h </A>
Palomo C.
Oiarbide M.
Laso A.
López R.
J. Am. Chem. Soc.
2005,
127:
17622
For recent examples of chiral µ-oxo or µ-hydroxide multi-rare-earth-metal complexes,
see:
<A NAME="RA48108ST-56A">56a </A>
Kato N.
Mita T.
Kanai M.
Therrien B.
Kawano M.
Yamaguchi K.
Danjo H.
Sei Y.
Sato A.
Furusho S.
Shibasaki M.
J. Am. Chem. Soc.
2006,
128:
6768
<A NAME="RA48108ST-56B">56b </A>
Wooten AJ.
Salvi L.
Carroll PJ.
Walsh PJ.
Adv. Synth. Catal.
2007,
349:
561
For syn -selective direct catalytic asymmetric nitroaldol reactions, see:
<A NAME="RA48108ST-57A">57a </A>
Sasai H.
Tokunaga T.
Watanabe S.
Suzuki T.
Itoh N.
Shibasaki M.
J. Org. Chem.
1995,
60:
7388
<A NAME="RA48108ST-57B">57b </A>
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Eur. J. Org. Chem.
2006,
2894
<A NAME="RA48108ST-57C">57c </A>
Sohtome Y.
Takemura N.
Takada K.
Takagi R.
Iguchi T.
Nagasawa K.
Chem. Asian J.
2007,
2:
1150
<A NAME="RA48108ST-57D">57d </A>
Arai T.
Watanabe M.
Yanagisawa A.
Org. Lett.
2007,
9:
3595
For anti -selective catalytic asymmetric nitroaldol reactions using silyl nitronates, see:
<A NAME="RA48108ST-58A">58a </A>
Ooi T.
Doda K.
Maruoka K.
J. Am. Chem. Soc.
2003,
125:
2054
<A NAME="RA48108ST-58B">58b </A>
Risgaard T.
Gothelf KV.
Jørgensen KA.
Org. Biomol. Chem.
2003,
1:
153
For anti -selective direct catalytic asymmetric nitroaldol reactions, see:
<A NAME="RA48108ST-59A">59a </A>
Uraguchi D.
Sakaki S.
Ooi T.
J. Am. Chem. Soc.
2007,
129:
12392
<A NAME="RA48108ST-59B">59b </A>
Purkarthofer T.
Gruber K.
Gruber-Khadjawi M.
Waich K.
Skranc W.
Mink D.
Griengl H.
Angew. Chem. Int. Ed.
2006,
45:
3454
<A NAME="RA48108ST-59C">59c </A>
Nitabaru T.
Kumagai N.
Shibasaki M.
Tetrahedron Lett.
2008,
49:
272
<A NAME="RA48108ST-60">60 </A>
Handa S.
Nagawa K.
Sohtome Y.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2008,
47:
3230
<A NAME="RA48108ST-61">61 </A>
Yamazaki N,
Fukuda Y,
Shibazaki Y,
Niizato T,
Kosugi I, and
Yoshioka S. inventors; US Patent 5,449,694.
; and references cited therein
<A NAME="RA48108ST-62">62 </A>
Tanaka N, and
Tamai T. inventors; JP Patent JP2002-64840.
; and references cited therein
<A NAME="RA48108ST-63">63 </A>
Chen Z.
Morimoto H.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2008,
130:
2170
<A NAME="RA48108ST-64A">64a </A>
Knudsen KR.
Jørgensen KA.
Org. Biomol. Chem.
2005,
3:
1362
<A NAME="RA48108ST-64B">64b </A>
Singh A.
Yoder RA.
Shen B.
Johnston JN.
J. Am. Chem. Soc.
2007,
129:
3466
<A NAME="RA48108ST-65">65 </A> For a review on the synthesis and utility of α,β-diamino acids, see:
Viso A.
Fernández de la Pradilla R.
García A.
Flores A.
Chem. Rev.
2005,
105:
3167
<A NAME="RA48108ST-66A">66a </A>
Negoro T.
Murata M.
Ueda S.
Fujitani B.
Ono Y.
Kuromiya A.
Suzuki K.
Matsumoto J.-I.
J. Med. Chem.
1998,
41:
4118
<A NAME="RA48108ST-66B">66b </A>
Kurono M.
Fujiwara I.
Yoshida K.
Biochemistry
2001,
40:
8216
<A NAME="RA48108ST-66C">66c </A>
Bril V.
Buchanan RA.
Diabetes Care
2004,
27:
2369
<A NAME="RA48108ST-66D">66d </A>
Kurono M.
Fujii A.
Murata M.
Fujitani B.
Negoro T.
Biochem. Pharmacol.
2006,
71:
338
<A NAME="RA48108ST-66E">66e </A>
Giannoukakis N.
Curr. Opin. Invest. Drugs
2006,
7:
916
<A NAME="RA48108ST-67A">67a </A>
Diels O.
Justus Liebigs Ann. Chem.
1922,
429:
1
<A NAME="RA48108ST-67B">67b </A>
Diels O.
Behncke H.
Ber. Dtsch. Chem. Ges.
1924,
57:
653
<A NAME="RA48108ST-68A">68a </A>
Marigo M.
Juhl K.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
1367
<A NAME="RA48108ST-68B">68b </A>
Ma S.
Jiao N.
Zheng Z.
Ma Z.
Lu Z.
Ye L.
Deng Y.
Chen G.
Org. Lett.
2004,
6:
2193
<A NAME="RA48108ST-68C">68c </A>
Foltz C.
Stecker B.
Marconi G.
Bellemin-Laponnaz S.
Wadepohl H.
Gabe LH.
Chem. Commun.
2005,
5115
<A NAME="RA48108ST-68D">68d </A>
Kim YK.
Kim DY.
Tetrahedron Lett.
2006,
47:
4565
<A NAME="RA48108ST-68E">68e </A>
Comelles J.
Pericas .
Moreno-Mañas M.
Vallribera A.
Drudis-Solé G.
Lledos A.
Parella T.
Roglans A.
García-Granda S.
Roces-Fernández L.
J. Org. Chem.
2007,
72:
2077
<A NAME="RA48108ST-69A">69a </A>
Sabby S.
Bella M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
8120
<A NAME="RA48108ST-69B">69b </A>
Pihko PM.
Pohjakallio A.
Synlett
2004,
2115
<A NAME="RA48108ST-69C">69c </A>
Liu X.
Li H.
Deng L.
Org. Lett.
2005,
7:
167
<A NAME="RA48108ST-69D">69d </A>
Xu X.
Yabuta T.
Yuan P.
Takemoto Y.
Synlett
2006,
137
<A NAME="RA48108ST-69E">69e </A>
Terada M.
Nakano M.
Ube H.
J. Am. Chem. Soc.
2006,
128:
16044
<A NAME="RA48108ST-70A">70a </A>
Mashiko T.
Hara K.
Tanaka D.
Fujiwara Y.
Kumagai N.
Shibasaki M.
J. Am. Chem. Soc.
2007,
129:
11342
<A NAME="RA48108ST-70B">70b </A>
Mashiko T., Kumagai N., Shibasaki M.; manuscript in preparation.