References and Notes
For recent reviews on sulfide in enantioselective catalysis, see:
<A NAME="RG03908ST-1A">1a</A>
Pellissier H.
Tetrahedron
2007,
63:
1297
<A NAME="RG03908ST-1B">1b</A>
Mellah M.
Voituriez A.
Schulz E.
Chem. Rev.
2007,
107:
5133
<A NAME="RG03908ST-1C">1c</A>
McGarrigle EM.
Myers EL.
Illa O.
Shaw MA.
Riches SL.
Aggarwal VK.
Chem. Rev.
2007,
107:
5841
<A NAME="RG03908ST-1D">1d</A>
McGarrigle EM.
Aggarwal VK.
Enantioselective Organocatalysis: Reactions and Experimental Procedures
Dalko PI.
Wiley-VCH;
Weinheim:
2007.
Chap. 10.
<A NAME="RG03908ST-1E">1e</A>
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
For recent reviews on chiral odorants, see:
<A NAME="RG03908ST-2A">2a</A>
Goeke A.
Sulfur Rep.
2002,
23:
243
<A NAME="RG03908ST-2B">2b</A>
Brenna E.
Fuganti C.
Serra S.
Tetrahedron: Asymmetry
2003,
14:
1
<A NAME="RG03908ST-2C">2c</A>
Bentley R.
Chem. Rev.
2006,
106:
4099
<A NAME="RG03908ST-3A">3a</A>
Demole E.
Enggist P.
Ohloff G.
Helv. Chim. Acta
1982,
65:
1785
<A NAME="RG03908ST-3B">3b</A>
Lehmann D.
Dietrich A.
Hener U.
Mosandl A.
Phytochem. Anal.
1995,
6:
255 ; and references cited therein
<A NAME="RG03908ST-4A">4a</A>
Weitkamp AW.
J. Am. Chem. Soc.
1959,
81:
3437
<A NAME="RG03908ST-4B">4b</A>
Moore CG.
Porter M.
Tetrahedron
1959,
6:
10
<A NAME="RG03908ST-4C">4c</A>
Bertaina C.
Cozzolino F.
Fellous R.
George G.
Rouvier E.
Parfums Cosmét. Arômes
1986,
71:
69
<A NAME="RG03908ST-4D">4d</A>
Janes JF.
Marr IM.
Unwin N.
Banthorpe DV.
Yusuf A.
Flavour Frag. J.
1993,
8:
289
<A NAME="RG03908ST-5A">5a</A>
Hargreaves M.
McDougall R.
Rabari L.
Z. Naturforsch., B: Anorg. Chem. Org. Chem.
1978,
33:
1535
<A NAME="RG03908ST-5B">5b</A>
Krein EB.
Aizenshtat Z.
J. Org. Chem.
1993,
58:
6103
<A NAME="RG03908ST-5C">5c</A>
Sirazieva EV.
Startseva VA.
Nikitina LE.
Sofronov AV.
Artemova NP.
Fedyunina IV.
Chem. Nat. Compd.
2007,
43:
52
<A NAME="RG03908ST-6A">6a</A> Review on polysulfane:
Steudel R.
Chem. Rev.
2007,
102:
3905
<A NAME="RG03908ST-6B">6b</A> Recent paper:
Aebisher D.
Brzostowska EM.
Mahendran A.
Greer A.
J. Org. Chem.
2007,
72:
2951 ; and references cited therein
For recent reviews, see:
<A NAME="RG03908ST-7A">7a</A>
Aggarwal VK.
Richardson J.
Chem. Commun.
2003,
2644
<A NAME="RG03908ST-7B">7b</A>
Aggarwal VK.
Winn CL.
Acc. Chem. Res.
2004,
37:
611 ; see also ref. 1c
<A NAME="RG03908ST-8">8</A>
The aqueous solutions of (NH4)2S (20% or 50%) are commercially available from Aldrich.
<A NAME="RG03908ST-9">9</A>
Synthesis of 4,7,7-Trimethyl-6-thia-1,5-bicyclo[3.2.1]octan-3-one
(5)
A 50% aq solution of diammonium sulfide (20 mL, 146.8 mmol) was added dropwise to
a mixture of TBAB (1.544 g, 4.8 mmol) and elemental sulfur (4.689 g, 146.2 mmol).
The solution was stirred for 5 min. Then, THF (9 mL) was added and carvone (15 mL,
93.8 mmol) was slowly introduced. The obtained red solution was vigorously stirred
at r.t. for 3-4 d (until carvone disappeared on TLC). The solution was diluted in
H2O (100 mL), and the product was extracted with Et2O (3 × 50 mL). The combined organic layers were washed with a sat. aq solution of
NH4Cl (15 mL), a sat. aq solution of K2CO3 (15 mL) and brine (15 mL). The organic layer was dried over MgSO4, filtrated, and concentrated in vacuo. The obtained oil was purified by flash column
chromatography (heptane-EtOAc, 5:1) to afford an inseparable mixture of diastereomers
as an oil which crystallised as a yellow powder (59%, 86:14 eq/ax). Trituration in
i-PrOH facilitated the crystallisation without changing the diastereomeric ratio. This
is a stable compound, which could be stored for at least a year in the fridge. Melting
point and optical rotation of the 86:14 mixture of diastereomers are given for indication:
mp 65-67 °C (lit5b 67-68 °C for the pure equatorial compound 5), [α]D
20 +116 (c 1.0, CHCl3). 1H NMR (250 MHz, CDCl3):
δ = 1.08 (d, J = 6.5 Hz, 3 H, eq), 1.19 (d, J = 7.5 Hz, 3 H, ax), 1.38 (s, 3 H, eq), 1.43 (s, 3 H, ax), 1.44 (s, 3 H, eq + ax),
2.27-2.43 (m, 3 H, eq + ax), 2.62-2.71 (m, 3 H, eq + ax), 3.47 (br s, 1 H, eq + ax).
13C NMR (63 MHz, CDCl3):
δ (eq) = 209.1, 54.8, 52.5, 52.1, 49.6, 44.9, 41.1, 34.0, 27.1, 13.7; δ (ax) = 212.6,
54.3, 49.9, 48.9, 42.1, 33.9, 33.8, 24.5, 17.4. IR (neat): 2951, 1698. HRMS: m/z calcd for C10H17OS [M + H]+: 185.1000; found: 185.1007. GC-MS: 2 peaks with the same mass(184). Enantioselective
GC was performed on a CYDEX-B chiral capillary column (25 m × 0.22 mm), 10 psi at
130 °C; t
R (enantiomers of the major epimer 5) = 47.7 and 49.5.
<A NAME="RG03908ST-10A">10a</A>
Ranu BC.
Mandal T.
Synlett
2007,
925
<A NAME="RG03908ST-10B">10b</A>
Lou
F.-W.
Xu J.-M.
Liu B.-K.
Wu Q.
Pan Q.
Lin X.-F.
Tetrahedron Lett.
2007,
48:
2815
<A NAME="RG03908ST-10C">10c</A>
Weïwer M.
Coulombel L.
Duñach E.
Chem. Commun.
2006,
332 ; and references cited therein
<A NAME="RG03908ST-11">11</A>
Yan T.-H.
Tsai C.-C.
Chien C.-T.
Cho C.-C.
Huang
P.-C.
Org. Lett.
2004,
6:
4961
<A NAME="RG03908ST-12">12</A>
4,7,7-Trimethyl-3-methylene-6-thiabi-cyclo[3.2.1]octane
(7)
Obtained as a mixture of epimers (58 mg, 95:5 eq/ax) after column-chromatography purification
(pentane-Et2O, 30:1); colourless liquid. 1H NMR (250 MHz, CDCl3): δ = 1.02 (d, J = 6.5 Hz, 3 H, eq), 1.15 (d, J = 7.3 Hz, 3 H, ax), 1.39 (s, 3 H, eq + ax), 1.43 (s, 3 H, eq), 1.50 (s, 3 H, ax),
1.98-2.22 (m, 3 H, eq + ax), 2.44-2.54 (m, 3 H, eq + ax), 3.47 (br s, 1 H, eq + ax),
4.80-4.90 (m, 2 H, eq + ax). 13C NMR (63 MHz, CDCl3): δ (main equatorial isomer) = 148.3, 112.8, 54.9, 53.8, 48.2, 42.6, 42.4, 38.5,
34.4, 25.5, 17.3. IR (neat): 1641, 1455, 886. HRMS: m/z calcd for C11H18S [M]+: 182.1129; found: 182.1126.
<A NAME="RG03908ST-13">13</A>
4,7,7-Trimethyl-3-phenyl-6-thiabicyclo[3.2.1]octan-3-ol
(8)
A small sample was purified on column chromatography (heptane-Et2O, 30:1) for analytical purposes. Only one diastereomer is seen by NMR. White solid;
mp 116-118 °C. 1H NMR (250 MHz, CDCl3): δ = 0.77 (d, J = 6.9 Hz, 3 H), 1.51 (s, 3 H), 1.72 (s, 3 H) 2.05 (dd, J = 4.5, 15.2 Hz, 1 H), 2.15 (d, J = 12.0 Hz, 1 H), 2.19-2.26 (m, 1 H), 2.27-2.38 (m, 2 H), 2.58-2.67 (m, 1 H), 3.46
(br d, J = 7.1 Hz, 1 H), 5.20 (s, 1 H, OH), 7.16-7.35 (m, 3 H), 7.46-7.50 (m, 2 H).
13C NMR (63 MHz, CDCl3): δ = 148.2, 127.9, 126.3, 125.4, 75.9, 55.2, 53.4, 49.5, 46.1, 44.4, 41.7, 35.0,
27.3, 14.3.
IR (neat): 3369, 2929, 1492, 1448, 1382. MS (EI):
m/z (%) = 262 (46), 244 (80).
<A NAME="RG03908ST-14">14</A>
4,7,7-Trimethyl-3-phenyl-6-thiabicyclo[3.2.1]oct-2-ene
(9)
Obtained as a mixture of epimers (191 mg, 80:20 eq/ax) after column-chromatography
purification (heptane-Et2O, 50:1). Yellow oil. 1H NMR (250 MHz, CDCl3): δ = 0.64 (d, J = 6.4 Hz, 3 H, ax), 0.91 (d, J = 7.2 Hz, 3 H, eq), 1.44 (s, 3 H, ax), 1.47 (s, 3 H, eq), 1.49 (s, 3 H, eq), 1.51
(s, 3 H, ax), 2.19-2.27 (m, 1 H, eq + ax), 2.31-2.44 (m, 1 H, eq + ax), 2.45-2.55
(m, 1 H, eq + ax), 3.15-3.23 (m, 1 H, eq + ax), 3.58 (t, J = 4.4 Hz, 1 H, eq + ax), 5.27-5.37 (m, 1 H, ax), 5.82 (br d, J = 6.6 Hz, 1 H, eq), 7.18-7.28 (m, 5 H, eq + ax). 13C NMR (63 MHz, CDCl3): δ (eq) = 141.9, 141.4, 128.4, 128.2, 126.8, 126.8, 60.5, 53.6, 48.4, 39.9, 38.8,
33.4, 27.6, 17.3; δ (ax) = 143.6, 128.3, 128.1, 127.1, 127.0, 54.8, 48.8, 48.1, 47.0,
35.0, 33.0, 25.9, 13.5; one sp2 signal is overlapping with one equatorial signal. IR (neat): 2927, 1777, 1599, 1453.
HRMS: m/z calcd for C16H21S [M + H]+: 245.1364; found: 245.1360.
<A NAME="RG03908ST-15">15</A>
3-Methoxy-4,7,7-trimethyl-6-thiabi-cyclo[3.2.1]octane
(11)
Obtained as a mixture of epimers (379 mg, 98:2 eq/ax) after column-chromatography
purification (heptane-Et2O, 20:1). Colourless oil. 1H NMR (400 MHz, CDCl3): δ (main equatorial isomer) = 0.99 (d, J = 6.9 Hz, 3 H), 1.43 (s, 3 H), 1.52 (s, 3 H), 1.54-1.59 (m, 1 H), 1.83-1.86 (m, 1
H), 1.96-1.99 (m, 1 H), 2.13-2.08 (m, 1 H), 2.25-2.30 (m, 1 H), 2.45-2.50 (m, 1 H),
3.14-3.16 (m, 1 H), 3.21 (t, J = 5.8 Hz, 1 H), 3.29 (s, 3 H). 13C NMR (63 MHz, CDCl3): δ (eq) = 78.4, 57.7, 53.5, 51.7, 47.0, 42.1, 41.8, 35.5, 30.5, 26.9, 16.3. IR (neat):
2923, 1459, 1115, 1091. HRMS: m/z calcd for C11H21OS [M + H]+: 201.1313; found: 201.1316.
For selected recent examples, see:
<A NAME="RG03908ST-16A">16a</A>
Winn CL.
Bellenie BR.
Goodman JM.
Tetrahedron Lett.
2002,
43:
5427
<A NAME="RG03908ST-16B">16b</A>
Aggarwal VK.
Alonso E.
Bae I.
Hynd G.
Lydon KM.
Palmer MJ.
Patel M.
Porcelloni M.
Richardson J.
Stenson RA.
Studley JR.
Vasse J.-L.
Winn CL.
J. Am. Chem. Soc.
2003,
125:
10926
<A NAME="RG03908ST-16C">16c</A>
Deng X.-M.
Cai J.
Ye S.
Sun X.-L.
Liao W.-W.
Li K.
Tang Y.
Wu
Y.-D.
Dai LX.
J. Am. Chem. Soc.
2006,
128:
9730
<A NAME="RG03908ST-16D">16d</A>
Davoust M.
Brière J.-F.
Jaffrès P.-A.
Metzner P.
J. Org. Chem.
2005,
70:
4166 ; and references cited therein
<A NAME="RG03908ST-17A">17a</A>
Silva MA.
Bellenie BR.
Goodman JM.
Org. Lett.
2004,
61:
2559
<A NAME="RG03908ST-17B">17b</A>
Edwards DR.
Montoya-Peleaz P.
Crudden CM.
Org. Lett.
2007,
9:
5481
<A NAME="RG03908ST-17C">17c</A>
For exhaustive studies on sulfonium ylide mechanism, see also ref. 1c, 7a.
<A NAME="RG03908ST-18">18</A>
The determination of odour concentration was carried out at IAP-SENTIC company (France)
by dynamic olfactometry according to the European standard EN13725 with trained 4
or 6 sensory assessors. Sample preparation: 10-20 mg of compounds were solubilised
in 2 g of abs. EtOH (solution 1) and diluted 100 times (solution 2). Then, 25 µL of
either solution 1 or 2 were injected within 10 l of air and analysed.
<A NAME="RG03908ST-19">19</A>
The odorant factor is defined as the maximum volume (m3) in which 1 g of compound could be detected (by the nose of assessors). The odorant
factor of limonene-thiol 3 (from Sigma Aldrich - CAS 71159-90-5) was evaluated to 11·106 by the method described in ref. 18.
<A NAME="RG03908ST-20">20</A>
Jaubert J.-N.
Tapiero C.
Dore J.-C.
Perfum. Flav.
1995,
20:
1