Subscribe to RSS
DOI: 10.1055/s-2008-1077949
Microwave-Assisted Cleavage of Aryl Methyl Ethers with Lithium Thioethoxide (LiSEt)
Publication History
Publication Date:
15 July 2008 (online)

Abstract
Lithium thioethoxide (LiSEt), a white solid easily prepared from EtSH and n-BuLi in hexane, was identified as a highly efficient reagent for the cleavage (O-demethylation) of aryl methyl ethers, i.e. methyl-protected phenols. Of particular synthetic value are applications in the double deprotection of 1,2-dimethoxyarenes (to give catechols) and in the selective monodeprotection of di- and trimethoxyarenes. The thermal reactions, which are usually performed in DMF as a solvent, can be greatly accelerated through microwave irradiation. In this case, the monodemethylated products are usually formed in high (80-99%) yield within only 15 minutes.
Key words
lithium - thioethanolate - phenol protecting groups - microwave irradiation - SN2 reactions - demethylation
- 1a
Wuts PGM.Greene TW. Greene’s Protective Groups in Organic Synthesis 4th ed.: Wiley; Hoboken, NJ: 2006.Reference Ris Wihthout Link - 1b
Kocienski PJ. Protecting Groups 3rd ed.: Georg Thieme Verlag; Stuttgart: 2004.Reference Ris Wihthout Link - For selected examples, see:
- 2a
Wu Q.Fu D.-X.Hou A.-J.Lei G.-Q.Liu Z.-J.Chen J.-K.Zhou T.-S. Chem. Pharm. Bull. 2005, 53: 1065Reference Ris Wihthout Link - 2b
Adams M.Pacher T.Greger H.Bauer R. J. Nat. Prod. 2005, 68: 83Reference Ris Wihthout Link - 2c
Kanchanapoom T.Noiarsa P.Tiengtham P.Otsuka H.Ruchirawat S. Chem. Pharm. Bull. 2005, 53: 579Reference Ris Wihthout Link - 3a
Kawasaki I.Matsuda K.Kaneko T. Bull. Chem. Soc. Jpn. 1971, 44: 1986Reference Ris Wihthout Link - 3b
Landini D.Montanari F.Rolla F. Synthesis 1978, 771Reference Ris Wihthout Link - 3c
Kamal A.Gayatri NL. Tetrahedron Lett. 1996, 37: 3359Reference Ris Wihthout Link - 3d
Hwang K.Park S. Synth. Commun. 1993, 23: 2845Reference Ris Wihthout Link - 4a
Jung ME.Lyster MA. J. Org. Chem. 1977, 42: 3761Reference Ris Wihthout Link - 4b
Minamikawa J.Brossi A. Tetrahedron Lett. 1978, 3085Reference Ris Wihthout Link - 4c
Olah GA.Narang SC. Tetrahedron 1982, 38: 2225Reference Ris Wihthout Link - 4d
Groutas WC.Felker D. Synthesis 1980, 861Reference Ris Wihthout Link - 5
Morita T.Okamoto Y.Sakurai H. J. Chem. Soc., Chem. Commun. 1978, 874 - 6a
McOmie JFW.West DE. Org. Synth., Coll. Vol. V Wiley; New York: 1973. p.412Reference Ris Wihthout Link - 6b
Vickery EH.Pahler LF.Eisenbraun EJ. J. Org. Chem. 1979, 44: 4444Reference Ris Wihthout Link - 6c
Demuynck M.Clercq P.Vandewalle M. J. Org. Chem. 1979, 44: 4863Reference Ris Wihthout Link - 6d
Meier H.Dullweber U. J. Org. Chem. 1997, 62: 7667Reference Ris Wihthout Link - 6e
Ryu I.Matsubara H.Yasuda S.Nakamura H.Curran D. J. Am. Chem. Soc. 2002, 124: 12946Reference Ris Wihthout Link - 7a
Williard PG.Fryhle CB. Tetrahedron Lett. 1980, 21: 3731Reference Ris Wihthout Link - 7b
Konieczny MT.Maciejewski G.Konieczny W. Synthesis 2005, 1575Reference Ris Wihthout Link - 8a
Nagaoka H.Schmid G.Iio H.Kishi Y. Tetrahedron Lett. 1981, 22: 899Reference Ris Wihthout Link - 8b
Gerecke M.Borer R.Brossi A. Helv. Chim. Acta 1976, 59: 2551Reference Ris Wihthout Link - 9a
Lansinger JM.Ronald RC. Synth. Commun. 1979, 9: 341Reference Ris Wihthout Link - 9b
Narayana C.Padmanabhan S.Kabalka GW. Tetrahedron Lett. 1990, 21: 6977Reference Ris Wihthout Link - 10a
Grieco PA.Ferrino S.Vidari G. J. Am. Chem. Soc. 1980, 102: 7586Reference Ris Wihthout Link - 10b
Node M.Hori H.Fujita E. J. Chem. Soc., Perkin. Trans. 1 1976, 2237Reference Ris Wihthout Link - 11a
Parker KA.Petraitis JJ. Tetrahedron Lett. 1981, 22: 397Reference Ris Wihthout Link - 11b
Li T.-T.Wu YL. J. Am. Chem. Soc. 1981, 103: 7007Reference Ris Wihthout Link - 11c
Kawamura Y.Takatsuki H.Torii F.Horie T. Bull. Chem. Soc. Jpn. 1994, 67: 511Reference Ris Wihthout Link - 12
Horie T.Kobayashi T.Kawamura Y.Yoshida I.Tominaga H.Yamashita K. Bull. Chem. Soc. Jpn. 1995, 68: 2033 - 13a
Fürstner A.Seidel G. J. Org. Chem. 1997, 62: 2332Reference Ris Wihthout Link - 13b
Köster R.Seidel G. Organometallic Syntheses 1988, 4: 440Reference Ris Wihthout Link - 13c
Bhatt MV. J. Organomet. Chem. 1978, 156: 221Reference Ris Wihthout Link - 14
Yamaguchi S.Nedachi M.Yokoyama H.Hirai Y. Tetrahedron Lett. 1999, 40: 7363 - 15a
Feutrill GI.Mirrington RN. Tetrahedron Lett. 1970, 1327Reference Ris Wihthout Link - 15b
Feutrill GI.Mirrington RN. Aust. J. Chem. 1972, 25: 1719Reference Ris Wihthout Link - 15c
Dodge JA.Stocksdale MG.Fahey KJ.Jones CD. J. Org. Chem. 1995, 60: 739Reference Ris Wihthout Link - 15d
Smith ABIII.Schow SR.Bloom JD.Thompson AS.Winzenberg KN. J. Am. Chem. Soc. 1982, 104: 4015Reference Ris Wihthout Link - 15e
Myers AG.Tom NJ.Fraley ME.Cohen SB.Mader DJ. J. Am. Chem. Soc. 1997, 119: 6072Reference Ris Wihthout Link - 16
Huffman JW.Joyner H.Lee MD.Jordan D.Pennington WT. J. Org. Chem. 1991, 56: 2081 - 17
Ahmad R.Saá JM.Cava MP. J. Org. Chem. 1977, 42: 1228 - 18
Hansson C.Wickberg B. Synthesis 1976, 191 - 19
Bernard AM.Ghiani MR.Piras PP.Rivoldini A. Synthesis 1989, 287 - 20a
Mechoulam R.Gaoni Y. J. Am. Chem. Soc. 1965, 87: 3273Reference Ris Wihthout Link - 20b
Alonso E.Ramon DJ.Yus M. J. Org. Chem. 1997, 62: 417Reference Ris Wihthout Link - 20c
Wilds AL.McCormack WB. J. Am. Chem. Soc. 1948, 70: 4127Reference Ris Wihthout Link - 21
Kirschke K.Wollf E. J. Prakt. Chem./Chem.-Ztg. 1995, 337: 405 - 22
Harrison IT. J. Chem. Soc., Chem. Commun. 1969, 616 - 23
McCarthy JR.Moore JL.Crege RJ. Tetrahedron Lett. 1978, 5183 - 24
Ireland RE.Walba D. Org. Synth. Coll. Vol. VI: Wiley; New York: 1988. p.567Reference Ris Wihthout Link - 25a
Newman MS.Sankaran V.Olson DR. J. Am. Chem. Soc. 1976, 98: 3237Reference Ris Wihthout Link - 25b
Newman MS.Sankaran V.Olson DR. J. Am. Chem. Soc. 1976, 98: 3237Reference Ris Wihthout Link - 26
Kelly TR.Dali HM.Tsang WG. Tetrahedron Lett. 1977, 3859 - 27
Welch SC.Rao ASCP. Tetrahedron Lett. 1977, 505 - 28
Hwu JR.Tsay S.-C. J. Org. Chem. 1990, 55: 5987 - 29a
Driver G.Johnson KE. Green Chem. 2003, 5: 163Reference Ris Wihthout Link - 29b
Chauhan SMS.Jain N. J. Chem. Res. 2004, 693Reference Ris Wihthout Link - 30a
Melillo DG.Larsen RD.Mathre DJ.Shukis WF.Wood AW.Collelouri JR. J. Org. Chem. 1987, 52: 5143Reference Ris Wihthout Link - 30b
Fujii N.Irie H.Yajima H. J. Chem. Soc., Perkin Trans. 1 1977, 2288Reference Ris Wihthout Link - 31a
Boger DL.Miyazaki S.Kim SH.Wu JH.Castle SL.Loiseleur O.Jin Q. J. Am. Chem. Soc. 1999, 121: 10004Reference Ris Wihthout Link - 31b
Boger DL.Kim SH.Mori Y.Weng J.-H.Rogel O.Castle SL.McAtee JJ. J. Am. Chem. Soc. 2001, 123: 1862Reference Ris Wihthout Link - 31c
Node M.Nishide K.Fuji K.Fujita E. J. Org. Chem. 1980, 45: 4275Reference Ris Wihthout Link - 32
Evans DA.Dinsmore CJ.Ratz AM.Evrard DA.Barrow JC. J. Am. Chem. Soc. 1997, 119: 3417 - 33
Inaba T.Umezawa I.Yuasa M.Inoue T.Mihashi S.Itokawa H.Ogura K. J. Org. Chem. 1987, 52: 2957 - 34 For a review, see:
Schmalz H.-G.Gotov B.Böttcher A. In Arene Metal Complexes. Topics in Organometallic Chemistry Vol. 7:Kündig EP. Springer; Berlin: 2004. p.157Reference Ris Wihthout Link - 35a
Geller T. PhD Dissertation TU-Berlin; Germany: 1998.Reference Ris Wihthout Link - 35b
Majdalani A.Schmalz H.-G. Synlett 1997, 1303Reference Ris Wihthout Link - 35c
Majdalani A.Schmalz H.-G. Tetrahedron Lett. 1997, 38: 4545Reference Ris Wihthout Link - 35d
Geller T.Schmalz H.-G.Bats JW. Tetrahedron Lett. 1998, 39: 1537Reference Ris Wihthout Link - 35e
Dehmel F.Schmalz H.-G. Org. Lett. 2001, 3: 3579Reference Ris Wihthout Link - 35f
Dehmel F.Lex J.Schmalz H.-G. Org. Lett. 2002, 4: 3915Reference Ris Wihthout Link - 36 For an efficient entry to stilbene 5 by cross-metathesis, see:
Velder J.Ritter S.Lex J.Schmalz H.-G. Synthesis 2006, 273 - 37a
Polunin KE.Polunina IA.Schmalz H.-G. Mendeleev Commun. 2002, 12: 178Reference Ris Wihthout Link - 37b
Polunin KE.Schmalz H.-G. Russ. J. Coord. Chem. 2004, 30: 252Reference Ris Wihthout Link - 38a For
synthetic approaches towards pestatone, see:
Cueto M.Jensen PR.Kaufmann C.Fenical W.Lobkovsky E.Clardy J. J. Nat. Prod. 2001, 64: 1444Reference Ris Wihthout Link - 38b
Kaiser F.Schmalz H.-G. Tetrahedron 2003, 59: 7345Reference Ris Wihthout Link - 38c
Iijima D.Tanaka D.Hamada M.Ogamino T.Ishikawa Y.Nishiyama S. Tetrahedron Lett. 2004, 45: 5469Reference Ris Wihthout Link - For a review on colchicine total synthesis, see:
- 39a
Graening T.Schmalz H.-G. Angew. Chem. Int. Ed. 2003, 42: 2580 ; Angew. Chem. 2003, 115, 2684Reference Ris Wihthout Link - 39b For a recent work from
this laboratory, see:
Graening T.Bette V.Neudörfl J.Lex J.Schmalz H.-G. Org. Lett. 2005, 7: 4317Reference Ris Wihthout Link - For previous examples of selective O-demethylation reactions with thiolate-based reagents which, however, require harsh reaction conditions, long reaction times and/or the use of HMPT as a toxic additive, see:
- 40a
Moos WH.Gless RD.Rapoport H. J. Org. Chem. 1982, 47: 1831Reference Ris Wihthout Link - 40b
Lal K.Zarate EA.Youngs WJ.Salomon RG. J. Am. Chem. Soc. 1986, 108: 1311Reference Ris Wihthout Link - 40c
Dodge JA.Stocksdale MG.Fahey KJ.Jones CD. J. Org. Chem. 1995, 60: 739Reference Ris Wihthout Link - 40d
Loubinoux B.Coudert G.Guillaumet G. Synthesis 1980, 638Reference Ris Wihthout Link - 40e
Lal K.Ghosh S.Salomon RG. J. Org. Chem. 1987, 52: 1072Reference Ris Wihthout Link - 41a
Kappe CO.Stadler A. Microwaves in Organic and Medicinal Chemistry Wiley-VCH; Weinheim: 2005.Reference Ris Wihthout Link - 41b
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250Reference Ris Wihthout Link - 41c
Kappe CO.Dallinger D. Nat. Rev. Drug Discovery 2006, 5: 51Reference Ris Wihthout Link - For the use of microwave irradiation in the cleavage or trans protection of aryl methyl ether using different reagents, see:
- 42a
Fredriksson A.Stone-Elander S. J. Labelled Compd. Radiopharm. 2002, 45: 529Reference Ris Wihthout Link - 42b
Marette C.Larrouquet C.Tisne’s P.Deloyeb J.-B.Grasa E. Tetrahedron Lett. 2006, 47: 6947Reference Ris Wihthout Link
References and Notes
DMF (99.8%, Fluka) was stored
over molecular sieves. GC-MS measurements were carried
out on an Agilent HP6890 instrument with MS detector 5937 N using
an Optima 1 MS (Macherey-Nagel) 30 m × 0.25 mm
capillary column with H2 as carrier gas. NMR data were
measured on Bruker DPX 300 and AC 250 instruments. Chemical shifts
(δ) are given in ppm relative to the solvent reference
as the internal standard. Reactions under microwave irradiation
were performed in a CEM Discover instrument (300 W) in glass tubes
with temperature and pressure control.
Preparation
of the Reagent (LiSEt): In a dry 500-mL Schlenk flask a solution
of n-BuLi (1.3 M) in hexane (120 mL,
160 mmol) was diluted with hexane (150 mL) under an argon atmosphere.
The solution was cooled to 0 ˚C and under rapid stirring
EtSH (200 mmol, 1.25 equiv, 15 mL) was added dropwise, whereupon
a white precipitate formed. The reaction mixture was stirred at
0 ˚C for 10 min and at r.t. for 30 min. After removal of
the solvent (always ensuring inert conditions) the residue was dried
in vacuo to give LiSEt as a white solid (10.6 g, 156 mmol, 97%).
The product was stored under argon at ambient temperature. C2H5SLi;
M = 68.06 g/mol. ¹H NMR (250
MHz, DMSO): δ = 1.06 (t, ³
J = 7.2 Hz, 3 H, H2), 2.27 (q, ³
J = 7.3 Hz, 2 H, H1).
General Procedure: The substrate (0.6 mmol,
1 equiv) and LiSEt (1.2 mmol, 2 equiv) were weighed into the reaction vessel
(either a Schlenk tube or a microwave reactor), which was then evacuated
and flushed with argon three times before DMF (5 mL) was added and
the reaction mixture was heated/irradiated as specified
in Table
[¹]
. Reactions
were monitored by TLC and/or GC-MS. For workup,
the mixture was cooled to r.t. and partitioned between 2 N aq HCl
(5 mL) and MTBE (5 mL). The aqueous layer was re-extracted with MTBE
(3 × 10 mL). The combined organic layers were washed with
brine (20 mL), dried over MgSO4, filtered through a pad
of silica and solvents were evaporated. The residue was flash chromatographed
on silica gel with
c-hexane-EtOAc
(4:1).
3-Methoxyphenol
(10): colorless oil. ¹H
NMR (CDCl3): δ = 3.76 (s, 3 H), 5.03
(br s, 1 H), 6.40-6.43, 6.46-6.50 (m, 3 H), 7.09-7.14
(m, 1 H). ¹³C NMR (CDCl3): δ = 55.3
(q), 101.5, 106.4, 107.9 (3 × d), 130.1 (d), 156.7 (s),
160.9 (s). HRMS (EI, 70 eV): m/z calcd for C7H8O2:
124.0524; found: 124.053.
3-Methoxy-2-methylphenol
(12): white solid; mp 42-43 ˚C. ¹H
NMR (CDCl3): δ = 2.11 (s, 3 H), 3.81
(s, 3 H), 4.80 (s, 1 H), 6.44 (d, ³
J = 8.5 Hz, 1 H), 6.47 (d, ³
J = 8.5 Hz, 1 H), 7.02 (ψt, ³
J = 8.5 Hz, 1 H). ¹³C
NMR (CDCl3): δ = 7.9 (q), 55.6 (q),
103.0 (d), 108.0 (d), 112.1 (s), 126.4 (d), 154.3 (q), 158.6 (q).
HRMS (EI, 70 eV): m/z calcd for C8H10O2: 138.0681;
found: 138.068.
2-Hydroxy-6-methoxybenzonitrile
(14): white solid; mp 163-164 ˚C. ¹H
NMR (CD3OD): δ = 3.87 (s, 3 H), 6.50
(d, ³
J = 8.4
Hz, 1 H), 6.52 (d, ³
J = 8.4
Hz, 1 H), 7.34 (ψt, ³
J = 8.5
Hz, 1 H). ¹³C NMR (CD3OD): δ = 56.7
(q), 90.6 (s), 102.9 (d), 109.0 (d), 115.4 (s), 136.1 (d), 163.0
(s), 163.9 (s). IR (ATR): 3220 (br m), 2230 (s), 1607 (s), 1594
(s), 1476 (s) cm-¹. HRMS (EI, 70 eV): m/z calcd
for C8H7NO2: 149.0477; found: 149.047.
3,5-Dimethoxybenzoic acid
(16):
GC-MS and NMR data matched those of an authentic(commercial)
sample.
1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone
(20): colorless oil. ¹H
NMR (CDCl3): δ = 2.54 (s, 3 H), 3.92
(s, 6 H), 6.03 (br s, 1 H), 7.22 (s, 2 H). ¹³C
NMR (CDCl3): δ = 26.2 (q), 56.4 (q),
105.7 (d), 128.8 (s), 139.7 (s), 146.7 (s), 200.3 (s). IR (ATR):
3350 (br m), 1728 (s) cm-¹. HRMS:
m/z calcd
for C10H12O4: 196.0736; found:
196.074.
5-Bromo-2,3-dimethoxyphenol
(22a): white solid; mp 68-70 ˚C. ¹H
NMR (CDCl3): δ = 3.82 (s, 3 H), 3.85
(s, 3 H), 5.83 (br s, 1 H), 6.59 (d, 4
J = 2.1
Hz, 1 H), 6.75 (d, 4
J = 2.1
Hz, 1 H). ¹³C NMR (CDCl3): δ = 56.5
(q), 60.9 (q), 107.9 (d), 111.6 (d), 116.4 (s), 134.8 (s), 149.9
(s), 152.8 (s). MS (EI, 70 eV; isotope pattern reflected a molecule
with one bromine atom): m/z (%) = 234 (95) [M]+,
232 (100) [M]+, 219 (95), 217
(97), 191 (46), 189 (55), 173 (29), 171 (31), 110 (14), 67 (41).
HRMS: m/z calcd
for C8H9O3
79Br: 231.9735;
found: 231.974.
4-Bromo-2,6-dimethoxyphenol (22b): white solid; mp 90-92 ˚C. ¹H
NMR (CDCl3): δ = 3.86 (s, 6 H), 5.42
(br s, 1 H), 6.70 (s, 2 H). ¹³C NMR
(CDCl3): δ = 56.4 (q), 108.4 (d), 111.04
(s), 138.9 (s), 147.5 (s). MS (EI, 70 eV; isotope pattern reflected
a molecule with one Br atom): m/z (%) = 234 (93) [M]+,
232 (100) [M]+, 219 (37),
217 (41), 191 (27), 189 (30), 176 (16), 174 (16), 110 (13), 67 (19),
50 (16). HRMS: m/z calcd for C8H9
79BrO3:
231.9735; found: 231.974.
2-Bromo-4,6-dichloro-3-methoxy-5-methylphenol
(24): white solid; mp 128 ˚C. ¹H
NMR (CDCl3): δ = 2.44 (s, 3 H), 3.85
(s, 3 H), 5.91 (s, 1 H). ¹³C NMR (CDCl3): δ = 18.1
(q), 60.6 (q), 103.7 (s), 117.0 (s), 121.2 (s), 134.9 (s), 148.0
(s), 152.5 (s). MS (EI, 70 eV; isotope pattern reflected a molecule
with one Br and two Cl atoms): m/z (%) = 290 (6) [M]+,
288 (44) [M]+, 286 (100) [M]+,
284 (63) [M]+, 273 (14), 271
(31), 269 (20), 245 (23), 243 (56), 241 (34), 179 (15), 177 (14).
HRMS: m/z calcd
for C8H7O2
79Br³5Cl2: 283.9006;
found: 283.901.