References and Notes
For reviews, see:
<A NAME="RU03908ST-1A">1a</A>
Hacksell U.
Daves GD.
Progress Med.
Chem.
1985,
22:
1
<A NAME="RU03908ST-1B">1b</A>
Rohr J.
Thiericke R.
Nat. Prod. Rep.
1992,
9:
103
<A NAME="RU03908ST-1C">1c</A>
Nicotra F.
Top.
Curr. Chem.
1997,
187:
55
For reviews of stereoselective synthesis
of aryl C-glycosides, see:
<A NAME="RU03908ST-2A">2a</A>
Suzuki K.
Matsumoto T. In
Recent Progress
in the Chemical Synthesis of Antibiotics and Related Microbial Products
Vol.
2:
Lukacs G.
Springer;
Berlin:
1993.
p.352
<A NAME="RU03908ST-2B">2b</A>
Jaramillo C.
Knapp S.
Synthesis
1994,
1
For the pioneering works of 1,2-cis-C-glycoside
using silicon tether, see:
<A NAME="RU03908ST-3A">3a</A>
Martin OR.
Rao SP.
Kurz KG.
El-Shenawy HA.
J.
Am. Chem. Soc.
1988,
110:
8698
<A NAME="RU03908ST-3B">3b</A>
Stork G.
Suh HS.
Kim G.
J.
Am. Chem. Soc.
1991,
113:
7054
<A NAME="RU03908ST-3C">3c</A>
Rousseau C.
Martin OR.
Org. Lett.
2003,
5:
3763
For examples of the organometal-mediated aryl C-glycosylation
in a 1,2-cis fashion, see:
<A NAME="RU03908ST-3D">3d</A>
Rainier JD.
Cox JM.
Org.
Lett.
2000,
2:
2707
<A NAME="RU03908ST-3E">3e</A>
Singh I.
Seitz O.
Org. Lett.
2006,
8:
4319
<A NAME="RU03908ST-4">4</A>
Tomooka K.
Nakazaki A.
Nakai T.
J.
Am. Chem. Soc.
2000,
122:
408
<A NAME="RU03908ST-5">5</A> Huang and co-workers have reported
the related BF3˙OEt2-promoted aryl
migration in a cyclic N,O-acetal
system. However, their method did not afford an aryl migration product
bearing the stereochemically defined silicon center. See:
Huang P.-Q.
Liu L.-X.
Wei B.-G.
Ruan Y.-P.
Org. Lett.
2003,
5:
1927
Related examples of phenyl migration
from silicon to carbon have been reported. For 1,4- or 1,5-phenyl
or vinyl migration promoted by Lewis acids, see:
<A NAME="RU03908ST-6A">6a</A>
Archibald SC.
Fleming I.
Tetrahedron
Lett.
1993,
34:
2387
<A NAME="RU03908ST-6B">6b</A>
Hioki H.
Izawa T.
Yoshizuka M.
Kunitake R.
Ito S.
Tetrahedron Lett.
1995,
36:
2289
For 1,2-phenyl migration promoted by fluoride ion, see:
<A NAME="RU03908ST-6C">6c</A>
Morihata K.
Horiuchi Y.
Taniguchi M.
Oshima K.
Utimoto K.
Tetrahedron
Lett.
1995,
36:
5555
<A NAME="RU03908ST-7">7</A>
General Procedure
of the 1,4-Aryl Migration
The 4-Å MS (580
mg) was placed in a two-necked flask and was flame dried under reduced
pressure. After the contents in the flask had cooled down, the flask
was purged with argon. Cyclic hemiacetal 1a (96
mg, 0.28 mmol) and benzyl alcohol (58 µL, 0.56 mmol) in
dry CH2Cl2 (9.5 mL) were added to the flask
at 0 ˚C. The resulting mixture was stirred at that temperature
for 30 min. Flame-dried montmorillonite K10 (482 mg) was added to
the suspension. The resulting mixture was stirred at that temperature
for 12 h, filtrated through a pad of Celite, and concentrated. Purification
by column chromatography (silica gel, hexane-Et2O,
12:1) afforded 86 mg (71%) of aryl migration product 2 with 90% dr.
<A NAME="RU03908ST-8">8</A>
All new compounds were fully characterized
by ¹H NMR, ¹³C
NMR, and IR spectroscopy. Data for selected compounds follow.
Compound 2 (90% dr at Si by ¹H
NMR analysis): ¹H NMR (300 MHz, CDCl3): δ = 7.53-7.21
(m, 13.2 H), 7.13-7.09 (m, 1.8 H), 4.85 (d, J = 3.6 Hz,
0.1 H), 4.82 (d, J = 3.3
Hz, 0.9 H), 4.77 (d, J = 13.2
Hz, 1 H), 4.69 (d, J = 13.2
Hz, 1 H), 4.61 (br dd, J = 3.3,
6.0 Hz, 1 H), 4.36 (q, J = 7.8
Hz, 0.9 H), 4.31 (q, J = 8.1
Hz, 0.1 H), 4.05 (dt, J = 4.8,
7.8 Hz, 0.9 H), 4.03-3.97 (m, 0.1 H), 2.29-2.14
(m, 2 H), 0.88 (s, 8.1 H), 0.81 (s, 0.9 H). ¹³C
NMR (75 MHz, CDCl3): δ = 140.84, 138.17,
135.42, 130.95, 129.95, 129.84, 128.35, 128.27, 128.19, 127.87,
127.80, 127.60, 127.54, 127.43, 127.04, 126.94, 125.66, 88.56, 85.42,
74.82, 74.59, 66.99, 66.84, 64.79, 64.50, 36.76, 36.58, 26.10, 26.00,
19.00, 18.70. IR (neat): 3068, 3032, 2934, 2862, 1951, 1895, 1810,
1723, 1669, 1605, 1593, 1495, 1475, 1456, 1431, 1064 cm-¹.
Anal. Calcd for C27H32O3Si: C,
74.96; H, 7.46. Found: C, 74.91; H, 7.20.
Compound 3a (>95% dr by ¹H
NMR analysis): [α]D
²4 +130.3
(c 1.40, CHCl3). ¹H
NMR (300 MHz, CDCl3):
δ = 7.43-7.27
(m, 5 H), 4.90 (d, J = 3.6
Hz, 1 H), 4.41 (br s, 1 H), 4.27 (q, J = 8.7
Hz, 1 H), 4.03 (dt, J = 4.2,
8.7 Hz, 1 H), 2.28 (ddt, J = 13.2,
4.2, 8.7 Hz, 1 H), 2.15 (dddd, J = 13.2, 8.7,
4.2, 1.5 Hz, 1 H), 1.19 (s, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 136.97, 128.66,
127.99, 126.80, 85.14, 73.72, 67.07, 34.93. IR (neat): 3392, 3066,
3032, 2928, 2884, 1957, 1895, 1820, 1493, 1454, 1125, 1083, 1060,
1029, 739, 700 cm-¹. ESI-HRMS: m/z calcd for C10H12O2Na:
187.0729; found: 187.0734.
Compound 6 (93% dr
at Si by ¹H NMR analysis): ¹H
NMR (300 MHz, CDCl3): δ = 7.51-7.47
(m, 0.2 H), 7.43-7.27 (m, 10.8 H), 7.20-7.14 (m,
2 H), 6.96-6.92 (m, 2 H), 5.10 (d, J = 4.8
Hz, 0.07 H), 5.04 (d, J = 4.2
Hz, 0.93 H), 4.90 (d, J = 13.2
Hz, 0.93 H), 4.84 (d, J = 13.2
Hz, 0.93 H), 4.64 (d, J = 13.5
Hz, 0.07 H), 4.56 (d, J = 13.5
Hz, 0.07 H), 4.37 (d, J = 4.8
Hz, 0.07 H), 4.18 (d, J = 4.8
Hz, 0.93 H), 3.98 (d, J = 7.8
Hz, 0.93 H), 3.91 (d, J = 7.8
Hz, 0.07 H), 3.62 (d, J = 7.8
Hz, 0.93 H), 3.56 (d, J = 7.8
Hz, 0.07 H), 1.23 (s, 2.79 H), 1.15 (s, 2.79 H), 1.02 (s, 0.42 H),
0.86 (s, 8.37 H), 0.75 (s, 0.63 H). ¹³C
NMR (75 MHz, CDCl3): δ = 140.77, 138.54,
135.42, 131.11, 129.69, 129.08, 128.36, 127.90, 127.64, 127.51,
127.07, 125.86, 85.66, 81.97, 79.11, 65.39, 44.94, 26.52, 26.05,
21.02, 19.11. IR (neat): 3068, 3032, 2966, 2862, 1949, 1870, 1810,
1740, 1607, 1593, 1473, 1456, 1065, 733, 698 cm-¹.
ESI-HRMS: m/z calcd for C29H36O3NaSi:
483.2331; found: 483.2310.
Compound 7 (>95% dr
by ¹H NMR analysis): ¹H
NMR (300 MHz, CDCl3): δ = 7.42-7.27
(m, 5 H), 5.30 (d, J = 3.6
Hz, 1 H), 3.96 (d, J = 7.5
Hz, 1 H), 3.80 (br t, J = 3.0
Hz, 1 H), 3.72 (d, J = 7.5
Hz, 1 H), 1.21 (s, 3 H), 1.15 (s, 3 H), 1.07 (br s, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 137.80, 128.69,
127.88, 126.73, 84.48, 80.61, 79.01, 44.21, 25.82, 19.41. IR (neat): 3342,
2960, 1950, 1900, 1830, 1466, 1309, 1096, 1038, 739, 700 cm-¹.
Anal. Calcd for C12H16O2: C, 74.97;
H, 8.39. Found: C, 74.86; H, 8.16.
Compound 11 (90% dr
at Si by ¹H NMR analysis): ¹H
NMR (300 MHz, CDCl3): δ = 7.63-7.61
(m, 0.3 H), 7.48-7.13 (m, 10.7 H), 7.17 (t, J = 7.5 Hz,
2 H), 6.99 (t, J = 7.5
Hz, 2 H), 4.76 (d, J = 13.5
Hz, 1 H), 4.65 (d, J = 13.5
Hz, 1 H), 4.43 (s, 1 H), 4.27-4.22 (m, 1 H), 4.09 (s, 1
H), 3.90-3.80 (m, 0.1 H), 3.66 (dt, J = 2.6,
12.6 Hz, 0.9 H), 2.42-2.00 (m, 2 H), 1.84-1.73
(m, 1 H), 1.40 (br d, J = 13.5
Hz, 1 H), 0.95 (s, 8.1 H), 0.83 (s, 0.9 H). ¹³C
NMR (75 MHz, CDCl3): δ = 141.02, 140.79,
135.89, 135.47, 135.39, 131.20, 129.59, 128.28, 128.17, 127.99,
127.88, 127.62, 127.51, 127.41, 127.28, 127.17, 126.93, 126.78,
126.73, 125.63, 82.58, 69.80, 69.55, 68.87, 68.77, 64.63, 31.34,
26.37, 26.31, 20.26, 19.04. IR (neat): 2930, 2856, 1961, 1898, 1808,
1453, 1115, 1098, 1071, 1026 cm-¹.
ESI-HRMS: m/z calcd for C28H34O3NaSi: 469.2169;
found: 469.2159.
Compound 12 (>95% dr
by ¹H NMR analysis): ¹H
NMR (300 MHz, CDCl3): δ = 7.38-7.25
(m, 5 H), 4.50 (d, J = 1.2 Hz,
1 H), 4.18 (ddt, J = 11.1,
4.5, 1.8 Hz, 1 H), 3.94-3.91 (m, 1 H), 3.65 (ddd, J = 12.3,
11.1, 2.4 Hz, 1 H), 2.17-2.02 (m, 2 H), 1.92-1.78
(m, 1 H), 1.72 (d, J = 5.4
Hz, 1 H), 1.48-1.42 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 139.64, 128.49,
127.52, 125.81, 81.18, 68.96, 68.01, 30.25, 19.92. IR (neat): 3454,
2947, 2849, 1958, 1887, 1813, 1451, 1267, 1216, 1091, 1057, 1003,
725, 699 cm-¹.
Compound 13 (63% dr by ¹H
NMR analysis): ¹H NMR (300 MHz, CDCl3): δ = 7.76-7.65
(m, 4.14 H), 7.50-7.21 (m, 14.6 H), 7.11-7.07
(m, 1.26 H), 4.86 (s, 0.63 H), 4.63-4.58 (m, 0.37 H), 4.62
(d, J = 12.0
Hz, 0.63 H), 4.59 (d, J = 11.7 Hz,
0.37 H), 4.57 (d, J = 11.7
Hz, 0.37 H), 4.54 (d, J = 12.0 Hz,
0.63 H), 4.51 (d, J = 11.7
Hz, 0.37 H), 4.46 (d, J = 11.7 Hz,
0.37 H), 4.39 (dt, J = 6.3,
3.9 Hz, 0.37 H), 4.35-4.27 (m, 1.63 H), 4.20 (d, J = 12.3 Hz,
0.63 H), 4.18 (d, J = 3.9
Hz, 0.37 H), 3.95 (d, J = 12.3
Hz, 0.63 H), 3.82 (br dd, J = 5.1, 1.2
Hz, 0.63 H), 3.74 (dd, J = 10.2,
5.1 Hz, 0.63 H), 3.70 (dd, J = 10.2,
6.9 Hz, 0.63 H), 3.66 (dd, J = 10.5,
3.9 Hz, 0.37 H), 3.51 (dd, J = 10.5,
6.3 Hz, 0.37 H), 3.24 (s, 1.11 H), 3.23 (s, 1.89 H), 1.12 (s, 3.33
H), 1.09 (s, 5.67 H). ¹³C NMR (75 MHz,
CDCl3): δ = 138.38, 138.25, 138.28,
138.07, 136.08, 135.90, 134.87, 133.80, 133.40, 133.22, 133.15,
130.08, 129.85, 129.79, 128.38, 128.32, 128.24, 127.91, 127.83, 127.70,
127.62, 127.56, 127.49, 127.44, 110.49, 101.59, 83.54, 83.46, 81.02,
79.96, 78.01, 75.55, 73.54, 73.48, 73.27, 71.49, 69.90, 69.68, 26.98,
26.95, 19.22. IR (neat): 3072, 3034, 2934, 2862, 1963, 1891, 1827,
1473, 1456, 1429, 1112, 1060, 822, 739, 700 cm-¹.
Anal. Calcd for C36H42O5Si: C,
74.19; H, 7.26. Found: C, 74.38; H, 7.36.
Compound 14 (81% dr at Si by ¹H
NMR analysis): ¹H NMR (300 MHz, CDCl3): δ = 7.56
(d, J = 1.5
Hz, 0.19 H), 7.54 (d, J = 1.5
Hz, 0.19 H), 7.47-7.12 (m, 18 H), 6.98 (d, J = 1.5 Hz, 0.81
H), 6.95 (d, J = 1.5
Hz, 0.81 H), 5.22 (d, J = 3.0
Hz, 0.19 H), 5.20 (d, J = 3.0
Hz, 0.81 H), 4.76 (dt, J = 3.6,
6.0 Hz, 1 H), 4.70 (d, J = 12.0
Hz, 0.81 H), 4.68 (d, J = 12.0
Hz, 0.19 H), 4.57 (d, J = 12.0
Hz, 0.81 H), 4.56 (d, J = 12.0
Hz, 0.81 H), 4.55 (d, J = 12.0
Hz, 0.19 H), 4.45 (d, J = 12.0
Hz, 0.81 H), 4.42 (dd, J = 3.3,
0.9 Hz, 0.19 H), 4.36 (dd, J = 2.7, 1.2
Hz, 0.81 H), 4.33 (d, J = 12.0
Hz, 0.19 H), 4.21 (d, J = 12.0
Hz, 0.19 H), 4.18 (dd, J = 3.6,
1.2 Hz, 0.81 H), 4.05 (dd, J = 3.6,
1.2 Hz, 0.19 H), 3.85 (dd, J = 9.9,
6.0 Hz, 0.81 H), 3.81 (dd, J = 9.9,
6.0 Hz, 0.81 H), 3.78 (d, J = 6.0
Hz, 0.38 H), 3.47 (s, 2.43 H), 3.07 (s, 0.57 H), 0.79 (s, 7.29 H), 0.77
(s, 1.71 H). ¹³C NMR (75 MHz, CDCl3): δ = 138.38, 138.04,
137.54, 135.37, 130.55, 130.13, 129.90, 128.43, 128.15, 128.07,
127.98, 127.93, 127.78, 127.62, 127.57, 127.48, 127.35, 85.32, 85.09,
83.44, 80.04, 79.75, 77.17, 73.69, 72.31, 69.08, 51.96, 26.21, 25.97,
18.62. IR (neat): 3068, 3032, 2934, 2862, 1953, 1890, 1810, 1087
cm-¹. Anal. Calcd for C36H42O5Si:
C, 74.19; H, 7.26. Found: C, 74.09; H, 7.09.
Compound 15 (>95% dr by ¹H
NMR analysis): [α]D
²4 -63.2 (c 1.07, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 7.40-7.28 (m,
15 H), 5.33 (d, J = 3.3
Hz, 1 H), 4.72 (d, J = 12.0
Hz, 1 H), 4.69 (d, J = 12.3
Hz, 1 H), 4.67 (ddd, J = 6.6,
5.7, 4.2 Hz, 1 H), 4.65 (d, J = 12.0
Hz, 1 H), 4,57 (d, J = 12.3
Hz, 1 H), 4.27 (br s, 1 H), 4.17 (br dd, J = 4.2,
1.2 Hz, 1 H), 3.84 (dd, J = 9.9,
5.7 Hz, 1 H), 3.80 (dd, J = 9.9,
6.6 Hz, 1 H), 1.27 (br s, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 138.41, 138.05, 136.36,
128.74, 128.53, 128.43, 128.14, 127.86, 127.64, 127.57, 126.83,
84.19, 83.01, 80.21, 76.45, 73.56, 72.70, 68.88. IR (neat): 3432,
3066, 3032, 2924, 2870, 1955, 1883, 1814, 1497, 1456, 1083, 737,
698 cm-¹. ESI-HRMS: m/z calcd
for C25H26O4Na: 413.1723; found:
413.1707.
<A NAME="RU03908ST-9">9</A>
Benzyl acetal 1b was
prepared from cyclic hemiacetal 1a and
benzyl alcohol in the presence of a catalytic amount of PPTS.
<A NAME="RU03908ST-10">10</A>
The stereochemistry and ee of benzyloxysilanol
(S)-4 was established
by chiral HPLC analysis [CHIRALCEL OD column, hexane-i-PrOH = 150:1,
flow rate = 0.6 mL/min, detection
254 nm light; t
R = 36.5
(major isomer), 41.9 min (minor isomer)].
A few synthetic methods for enantioenriched
silanol have been reported. For resolution or separation of racemic
or diastereomeric silanols, see:
<A NAME="RU03908ST-11A">11a</A>
Tacke R.
Linoh H.
Ernst L.
Moser U.
Mutschler E.
Sarge S.
Cammenga HK.
Lambrecht G.
Chem. Ber.
1987,
120:
1229
<A NAME="RU03908ST-11B">11b</A>
Yamamoto K.
Kawanami Y.
Miyazawa M.
J.
Chem. Soc., Chem. Commun.
1993,
436
<A NAME="RU03908ST-11C">11c</A>
Feibush B.
Woolley CL.
Mani V.
Anal.
Chem.
1993,
65:
1130
<A NAME="RU03908ST-11D">11d</A>
Mori A.
Toriyama F.
Kajiro H.
Hirabayashi K.
Nishihara Y.
Hiyama T.
Chem. Lett.
1999,
549
<A NAME="RU03908ST-11E">11e</A>
Yamamura Y.
Toriyama F.
Kondo T.
Mori A.
Tetrahedron: Asymmetry
2002,
13:
13
For stereospecific oxidation of enantioenriched silanes
or halosilanes, see:
<A NAME="RU03908ST-11F">11f</A>
Cavicchioli M.
Montanari V.
Resnati G.
Tetrahedron
Lett.
1994,
35:
6329
<A NAME="RU03908ST-11G">11g</A>
Adam W.
Mitchell CM.
Saha-Möller CR.
Weichold O.
J.
Am. Chem. Soc.
1999,
121:
2097 ;
and references therein
<A NAME="RU03908ST-12">12</A> All spectral data of 7 matched
with those reported in the following literature:
Angle SR.
Neitzel ML.
J.
Org. Chem.
1999,
64:
8754
<A NAME="RU03908ST-13">13</A>
A similar reaction of hemiketal 8a provided the correspond-
ing
phenyl migration product 9 in 93% dr,
albeit in low yield. The stereochemistry of 9 was
assumed on the basis of the reaction mechanism (Scheme
[7]
).
<A NAME="RU03908ST-14">14</A>
Due to their ease of preparation,
we chose acetals 10 and 13 as
substrates, rather than the corresponding hemiacetals.
<A NAME="RU03908ST-15">15</A> All spectral data of 12 matched
those reported in the following literature:
Schmidt B.
J.
Org. Chem.
2004,
69:
7672
Methyl acetal 13 was
prepared from d-xylose in five steps: (1)
acetone, cat. H2SO4, (2) 0.2% aq
HCl, 97% (two steps), (3) NaH, BnBr, 87%, (4)
cat. H2SO4, MeOH, 96%, and (5) TBDPSCl,
imidazole, 72%.
<A NAME="RU03908ST-16A">16a</A>
Levene PA.
Raymond AL.
J.
Biol. Chem.
1933,
102:
317
<A NAME="RU03908ST-16C">16c</A>
Baker BR.
Schaub RE.
J.
Am. Chem. Soc.
1955,
77:
5900
<A NAME="RU03908ST-16D">16d</A>
Martin OR.
Rao SP.
El-Shenawy HA.
Kurz KG.
Cutler AB.
J. Org.
Chem.
1988,
53:
3287
<A NAME="RU03908ST-17">17</A>
The starting material 13 was
not consumed after 2 d at r.t.
<A NAME="RU03908ST-18">18</A> We have already demonstrated that
enantioenriched silanol bearing allyloxy group can be converted
into a chiral allylsilane, which is a more useful and versatile
chiral building block. See:
Nakazaki A.
Nakai T.
Tomooka K.
Angew.
Chem., Int. Ed.
2006,
45:
2235