References and Notes
<A NAME="RG20408ST-1A">1a</A>
Fujita T.
J. Med. Chem.
1973,
16:
923
<A NAME="RG20408ST-1B">1b</A>
Wise R.
Andrews JM.
Edwards LJ.
Antimicrob. Agents Chemother.
1983,
23:
559
<A NAME="RG20408ST-1C">1c</A>
Daluge SM.
Martin MT.
Sickles BR.
Livingston DA.
Nucleosides,
Nucleotides Nucleic Acids
2000,
19:
297
<A NAME="RG20408ST-2">2</A>
Vilsmaier E. In The Chemistry of the Cyclopropyl Group
Rappoport Z.
Wiley;
New
York:
1987.
p.1341
Some recent examples:
<A NAME="RG20408ST-3A">3a</A>
Bégis G.
Cladingboel D.
Motherwell WB.
Chem. Commun.
2003,
2656
<A NAME="RG20408ST-3B">3b</A>
Moreau B.
Charette AB.
J. Am. Chem. Soc.
2005,
127:
18014
<A NAME="RG20408ST-3C">3c</A>
Hohn E.
Pietruszka J.
Solduga G.
Synlett
2006,
1531
<A NAME="RG20408ST-3D">3d</A>
Tanguy C.
Bertus P.
Szymoniak J.
Larionov OV.
de Meijere A.
Synlett
2006,
3164
<A NAME="RG20408ST-4A">4a</A>
Bertus P.
Szymoniak J.
Chem.
Commun.
2001,
1792
<A NAME="RG20408ST-4B">4b</A> Review:
Bertus P.
Szymoniak J.
Synlett
2007,
1346
<A NAME="RG20408ST-5A">5a</A>
Kulinkovich OG.
Sviridov SV.
Vasilevsky DA.
Synthesis
1991,
234
<A NAME="RG20408ST-5B">5b</A>
Kulinkovich OG.
Eur. J. Org. Chem.
2004,
4517
<A NAME="RG20408ST-6A">6a</A>
Chaplinski V.
de Meijere A.
Angew.
Chem., Int. Ed. Engl.
1996,
35:
413
<A NAME="RG20408ST-6B">6b</A>
de Meijere A.
Kozhushkov SI.
Savchenko AI.
J. Organomet. Chem.
2004,
689:
2033
<A NAME="RG20408ST-7A">7a</A>
Kulinkovich OG.
Savchenko AI.
Sviridov SV.
Vasilevski DA.
Mendeleev Commun.
1993,
230
<A NAME="RG20408ST-7B">7b</A>
Kasatkin A.
Sato F.
Tetrahedron Lett.
1995,
36:
6079
<A NAME="RG20408ST-7C">7c</A>
Lee J.
Kang CH.
Kim H.
Cha JK.
J. Am. Chem. Soc.
1996,
118:
291
<A NAME="RG20408ST-7D">7d</A>
Lee J.
Cha JK.
J. Org. Chem.
1997,
62:
1584
<A NAME="RG20408ST-8">8</A>
Laroche C.
Bertus P.
Szymoniak J.
Tetrahedron
Lett.
2003,
44:
2485
<A NAME="RG20408ST-9">9</A>
Laroche C.
PhD
Thesis
Université de Reims;
France:
2006.
<A NAME="RG20408ST-10A">10a</A>
Shevchuk TA.
Kulinkovich OG.
Russ. J. Org. Chem.
2000,
36:
1124
<A NAME="RG20408ST-10B">10b</A>
Quan LG.
Kim S.-H.
Lee JC.
Cha JK.
Angew.
Chem. Int. Ed.
2002,
41:
2160
For related Ti-mediated coupling of homoallylic alcohols,
see:
<A NAME="RG20408ST-10C">10c</A>
Sung MJ.
Pang J.-H.
Park S.-B.
Cha JK.
Org. Lett.
2003,
5:
2137
<A NAME="RG20408ST-10D">10d</A>
Isakov VE.
Kulinkovich OG.
Synlett
2003,
967
<A NAME="RG20408ST-10E">10e</A>
Reichard HA.
Micalizio GC.
Angew.
Chem. Int. Ed.
2007,
46:
1440
<A NAME="RG20408ST-11">11</A>
Bobrov DN.
Kim K.
Cha JK.
Tetrahedron
Lett.
2008,
49:
4089
<A NAME="RG20408ST-12">12</A>
Spectroscopic
Data of A
¹H NMR (250 MHz, C6D6): δ = 1.46
(d, J = 5.8
Hz, 18 H), 2.88 (br s, 2 H), 4.73 (br s, 5 H), 5.29 (d, J = 10.2 Hz,
1 H), 5.40 (d, J = 17.2
Hz, 1 H), 6.09-6.25 (m, 1 H). ¹³C
NMR (62.9 MHz, C6D6): δ = 26.98,
38.50, 74.70, 76.94, 116.48, 136.41.
<A NAME="RG20408ST-13">13</A>
General Procedure
for the MeTi(O
i
-Pr)
3
-Mediated Cyclopropanation
of Homoallylic Alcohols and Nitriles
To a solution
(under argon) of nitrile (1 mmol) and homoallylic alcohol (1.2 mmol)
in THF (10 mL) was added dropwise MeTi(Oi-Pr)3 (1.2
mmol, 0.29 mL) and the reaction was stirred for 30 min. A solution
of cyclohexyl magnesium chloride (2.4 mmol, 1.2 mL, 2 M in Et2O)
was added dropwise to the mixture and was stirred for 90 min. Water
(5 mL) was added followed by EtOAc (10 mL). The product was extracted
with EtOAc (3 × 10 mL). The combined
extracts were dried over MgSO4. After evaporation of
the solvent, the product was purified by flash chromatography on
SiO2 to give 3a-i or 6a-f.
<A NAME="RG20408ST-14">14</A>
Selected Data
of 2-[(1
R
*,2
S
*)-2-amino-2-benzyl-cyclopropyl] Ethanol
(3a)
¹H NMR (250 MHz, MeOD): δ = 0.41
(t, J = 5.5
Hz, 1 H), 0.77 (dd, J = 9.2,
5.0 Hz, 1 H), 0.91-1.02 (m, 1 H), 1.62 (ddd, J = 14, 9.5,
5.8 Hz, 1 H), 1.68-1.90 (m, 1 H), 2.45 (br s, 3 H), 2.70
(dd, J = 18.0,
14.1 Hz, 2 H), 3.58 (t, J = 5.7
Hz, 2 H), 7.27 (m, 5 H). ¹³C NMR (62.9
MHz, MeOD): δ = 18.0, 22.9,
30.6, 37.6, 47.5, 61.9, 126.7, 128.7, 129.4, 139.3. IR (neat): 3417,
2922, 1641, 1495, 1452, 1047 cm-¹.
HRMS (ES): m/z calcd for C12H18NO [M + H]+:
192.1388; found: 192.1383.
<A NAME="RG20408ST-15">15</A>
In contrast, similar cyclopropanation
of substituted homoallylic alcohols and carboxylic esters occurs
with good 1,3-diastereoselection, see ref. 10b.
<A NAME="RG20408ST-16">16</A> For a recent review devoted to aminocyclopropane-carboxylic
acid derivatives, see:
Brackmann F.
de
Meijere A.
Chem. Rev.
2007,
107:
4493
For preceding syntheses of 2,3-methanoglutamic
acid derivatives, see:
<A NAME="RG20408ST-17A">17a</A>
Wakamiya T.
Oda Y.
Fujita H.
Shiba T.
Tetrahedron Lett.
1986,
27:
2143
<A NAME="RG20408ST-17B">17b</A>
Mapelli C.
Elrod EF.
Holt EM.
Stammer CH.
Tetrahedron
1989,
45:
4377
<A NAME="RG20408ST-17C">17c</A>
Slama JT.
Satsangi RK.
Simmons A.
Lynch V.
Bolger RE.
Suttie J.
J. Med. Chem.
1990,
33:
824
<A NAME="RG20408ST-17D">17d</A>
Lim D.
Burgess K.
J. Org. Chem.
1997,
62:
9382
<A NAME="RG20408ST-17E">17e</A>
Jimenez JM.
Ortuno RM.
Tetrahedron:
Asymmetry
1996,
7:
3203
<A NAME="RG20408ST-17F">17f</A>
Kordes M.
Winsel H.
de Meijere A.
Eur.
J. Org. Chem.
2000,
3235
<A NAME="RG20408ST-17G">17g</A>
Frick JA.
Klassen
JB.
Rapoport H.
Synthesis
2005,
1751
<A NAME="RG20408ST-18">18</A>
Bertus P.
Szymoniak J.
Synlett
2003,
265
<A NAME="RG20408ST-19">19</A>
Selected Data
of 1-[2-Hydroxy-2-(2-methoxyphenyl)-ethyl]-4-azaspiro[2.4]heptan-5-one
(6f)
Minor diastereomer: ¹H NMR
(250 MHz, MeOD): δ = 0.49 (t, J = 6.0 Hz,
1 H), 0.76 (dd, J = 9.6,
6.0 Hz, 1 H), 1.00 (ddd, J = 9.5,
6.6, 4.4 Hz, 1 H), 1.62 (ddd, J = 14.0,
9.5, 5.8 Hz, 1 H), 1.81-1.85 (m, 1 H), 1.93 (ddd, J = 14.0,
7.6, 4.4 Hz, 1 H), 2.15-2.24 (m, 3 H), 3.84 (s, 3 H), 5.04
(dd, J = 7.6,
5.8 Hz, 1 H), 6.88-6.96 (m, 2 H), 7.21 (td, J = 7.5, 1.4
Hz, 1 H), 7.38 (dd, J = 7.5,
1.4 Hz, 1 H). ¹³C NMR (62.9 MHz, MeOD): δ = 15.5,
21.4, 31.5, 31.7, 38.0, 44.7, 55.8, 69.7, 111.3, 121.5, 127.6, 129.2,
133.9, 157.6, 180.4. IR (KBr): 3420, 2523, 2076, 1651, 1457, 1117
cm-¹.
Major diastereomer: ¹H
NMR (250 MHz, MeOD): δ = 0.41 (t, J = 6 Hz,
1 H), 0.70 (dd, J = 9.5,
6.0 Hz, 1 H), 0.89-0.95 (m, 1 H), 1.64-1.68 (m,
1 H), 1.83 (ddd, J = 14.3,
8.8, 5.5 Hz, 1 H), 1.89-1.98 (m, 2 H), 2.05-2.12
(m, 2 H), 3.83 (s, 3 H), 5.15 (t, J = 5.1
Hz, 1 H), 6.89 (dd, J = 7.5,
0.6 Hz, 1 H), 6.94 (td, J = 7.5,
0.6 Hz, 1 H), 7.22 (td, J = 7.5,
1.5 Hz, 1 H), 7.46 (dd, J = 7.5,
1.5 Hz, 1 H). ¹³C NMR (62.9 MHz, MeOD): δ = 15.4,
20.7, 31.2, 31.4, 36.6, 44.9, 55.7, 68.4, 111.3, 121.3, 127.4, 129.1,
133.7, 157.4, 180.5. IR (KBr): 3405, 2505, 2075, 1658, 1462, 1118
cm-¹. HRMS (ES): m/z calcd
for C15H20NO3 [M + H]+:
192.1443; found: 192.1442.
The tricyclic framework of 7 is rare in the literature, see:
<A NAME="RG20408ST-20A">20a</A>
Hanessian S.
Buckle R.
Bayrakdarian M.
J.
Org. Chem.
2002,
67:
3387
<A NAME="RG20408ST-20B">20b</A>
Beak P.
Wu S.
Yum EK.
Jun YM.
J. Org. Chem.
1994,
59:
276
<A NAME="RG20408ST-21">21</A> The pyrrolizidine analogue 7 was recently obtained by Ti-mediated
cyclopropanation of unsaturated imides, see:
Bertus P.
Szymoniak J.
Org. Lett.
2007,
9:
659