Abstract
A mild and environmentally friendly method for Lewis acid catalyzed
oxidative rearrangement of tertiary allylic alcohols to β-disubstituted
enones by the TEMPO/PhIO system is described. Bismuth triflate
was found to be the most efficient catalyst for the majority of
the substrates tested except for tertiary vinyl carbinols which
could be transformed to enals in fair yields only when Re2 O7 was
used as catalyst. A plausible mechanism for this oxidative rearrangement
is discussed.
Key words
iodosylbenzene - Lewis acids - oxidation - tertiary allylic alcohols - TEMPO
References and Notes
For examples of natural products
bearing a β-disubstituted enone, see:
<A NAME="RD07108ST-1A">1a </A> Fukinone:
Naya K.
Takagi I.
Kawaguchi Y.
Asada Y.
Hirose Y.
Shinoda N.
Tetrahedron
1968,
24:
5871
<A NAME="RD07108ST-1B">1b </A> Hernandulcin:
Compadre CM.
Pezzuto JM.
Kinghorn AD.
Kamath SK.
Science
1985,
227:
417
<A NAME="RD07108ST-1C">1c </A> Tetrahydrodicranenone B:
Ichikawa T.
Namikawa M.
Yamada K.
Sakai K.
Kondo K.
Tetrahedron Lett.
1983,
24:
3337
<A NAME="RD07108ST-1D">1d </A> Azadiradione:
Lavie D.
Levy EC.
Jain MK.
Tetrahedron
1971,
27:
3927
<A NAME="RD07108ST-1E">1e </A> Dichotenone A and B:
Ali MS.
Pervez MK.
Saleem M.
Ahmed F.
Nat.
Prod. Res.
2003,
17:
301
<A NAME="RD07108ST-2A">2a </A>
Babler JH.
Coghlan MJ.
Synth. Commun.
1976,
469
<A NAME="RD07108ST-2B">2b </A>
Dauben WG.
Michno DM.
J.
Org. Chem.
1977,
42:
682
<A NAME="RD07108ST-2C">2c </A>
Sundararaman P.
Herz W.
J. Org. Chem.
1977,
42:
813
<A NAME="RD07108ST-3A">3a </A>
Mehta G.
Reddy AV.
Tetrahedron
Lett.
1979,
20:
2625
<A NAME="RD07108ST-3B">3b </A>
Nakano T.
Martin A.
Rojas A.
Tetrahedron
1982,
38:
1217
<A NAME="RD07108ST-3C">3c </A>
Murai A.
Abiko A.
Masamune T.
Tetrahedron
Lett.
1984,
25:
4955
<A NAME="RD07108ST-3D">3d </A>
Mori K.
Kato M.
Tetrahedron Lett.
1986,
27:
981
<A NAME="RD07108ST-3E">3e </A>
Alvarez FC.
Vander Meer RK.
Lofgren CS.
Tetrahedron
1987,
43:
2897
<A NAME="RD07108ST-3F">3f </A>
Drew J.
Letellier M.
Morand P.
Szabo AG.
J. Org. Chem.
1987,
52:
4047
<A NAME="RD07108ST-3G">3g </A>
Majetich G.
Lowery D.
Khetani V.
Song J.-S.
Hull K.
Ringold C.
J. Org. Chem.
1991,
56:
3988
<A NAME="RD07108ST-3H">3h </A>
Majetich G.
Song J.-S.
Leigh AJ.
Condon SM.
J. Org. Chem.
1993,
58:
1030
<A NAME="RD07108ST-3I">3i </A>
Abad A.
Arno M.
Agullo C.
Cunat AC.
Meseguer B.
Zaragoza RJ.
J. Nat. Prod.
1993,
56:
2133
<A NAME="RD07108ST-3J">3j </A>
Trost BM.
Pinkerton AB.
Org.
Lett.
2000,
2:
1601
<A NAME="RD07108ST-3K">3k </A>
Nagata H.
Miyazawa N.
Ogasawara K.
Chem.
Commun.
2001,
1094
<A NAME="RD07108ST-3L">3l </A>
Hanada K.
Miyazawa N.
Ogasawara K.
Org.
Lett.
2002,
4:
4515
<A NAME="RD07108ST-3M">3m </A>
Mohr PJ.
Halcomb RL.
J.
Am. Chem. Soc.
2003,
125:
1712
<A NAME="RD07108ST-3N">3n </A>
Boyer FD.
Hanna I.
Org. Lett.
2007,
9:
2293
<A NAME="RD07108ST-4A">4a </A>
Liotta D.
Brown D.
Hoekstra W.
Monahan R.
Tetrahedron
Lett.
1987,
28:
1069
<A NAME="RD07108ST-4B">4b </A>
Majetich G.
Condon S.
Hull K.
Ahmad S.
Tetrahedron Lett.
1989,
30:
1033
<A NAME="RD07108ST-5A">5a </A>
Shibuya M.
Ito S.
Takahashi M.
Iwabuchi Y.
Org. Lett.
2004,
6:
4303
<A NAME="RD07108ST-5B">5b </A>
Tello-Aburto R.
Ochoa-Teran A.
Olivo HF.
Tetrahedron
Lett.
2006,
47:
5915
<A NAME="RD07108ST-6A">6a </A>
Vatèle J.-M.
Tetrahedron Lett.
2006,
47:
715
<A NAME="RD07108ST-6B">6b </A>
Vatèle J.-M.
Synlett
2006,
2055
For reviews on Bi(OTf)3 ,
see:
<A NAME="RD07108ST-7A">7a </A>
Suzuki H.
Ikegami T.
Matano Y.
Synthesis
1997,
249
<A NAME="RD07108ST-7B">7b </A>
Leonard NM.
Wieland LC.
Mohan RS.
Tetrahedron
2002,
58:
8373
<A NAME="RD07108ST-7C">7c </A>
Gaspard-Iloughmane H.
Le Roux C.
Eur.
J. Org.
2004,
2517
<A NAME="RD07108ST-8">8 </A> The pH test paper indicated a variation
of pH from 3.5 at the beginning of the reaction to 1 at the end.
Water formed in this reaction may partially hydrolyzed Bi(OTf)3 to
generate triflic acid. For a study of the hydrolysis of Bi(OTf)3 ,
see:
Répichet S.
Zwick A.
Vendier L.
Le Roux C.
Dubac J.
Tetrahedron
Lett.
2002,
43:
993
For exemples of the use of molecular
sieves as acid scavenger, see:
<A NAME="RD07108ST-9A">9a </A>
Vatèle J.-M.
Tetrahedron
2002,
58:
5689
<A NAME="RD07108ST-9B">9b </A>
Urata H.
Hu N.-X.
Maekawa H.
Fuchikami T.
Tetrahedron Lett.
1991,
32:
4733
<A NAME="RD07108ST-9C">9c </A>
Banks AR.
Fibiger RF.
Jones T.
J. Org. Chem.
1977,
42:
3965
<A NAME="RD07108ST-10">10 </A>
Lo HC.
Han H.
D’Souza LJ.
Sinha SC.
Keinan E.
J.
Am. Chem. Soc.
2007,
128:
1246
For recent exemples of Re2 O7 -induced
1,3-isomerization of allylic alcohols, see:
<A NAME="RD07108ST-11A">11a </A>
Hansen EC.
Lee D.
J. Am. Chem. Soc.
2006,
128:
8142
<A NAME="RD07108ST-11B">11b </A>
Park S.
Lee D.
Synthesis
2007,
2313
<A NAME="RD07108ST-12">12 </A> For other oxorhenium(VII) derivative
catalyzed 1,3-allylic rearrangements of allylic alcohols, see:
Bellemin-Laponnaz S.
Le Ny JP.
Compt.
Rend. Chem.
2002,
5:
217
<A NAME="RD07108ST-13">13 </A>
General Procedure
for Lewis Acid Catalyzed Oxidative Rearrangement of Tertiary Allylic
Alcohols with TEMPO and PhIO (Table 2)
To a solution
of tertiary alcohol (1 mmol) in CH2 Cl2 (5
mL) were added PhIO (264 mg, 2 equiv) and TEMPO (15.6 mg, 0.1 equiv).
For method B and C, powdered 4 Å MS was also added (0.08
and 0.13 g/mmol, respectively). The suspension was cooled
to 0 ˚C and Lewis acid was added. Dissolution
of PhIO is indicative of the end of the reaction. For method A, just
after dissolution of PhIO, powdered NaHCO3 was added and
the stirring was continued for 10 min. In all cases, the reaction
was poured onto a column of SiO2 (20 g) and eluted with
EtOAc-PE (1:6). The purity of each synthesized carbonyl
compound was checked by NMR spectroscopy.
<A NAME="RD07108ST-14">14 </A> For an overview of π-electrophilic
Lewis acids, see:
Yamamoto Y.
J. Org.
Chem.
2007,
72:
7817
<A NAME="RD07108ST-15">15 </A> For a kinetic study of the oxidation
of cyclohexanol and of its 2- and 3-methyl derivatives with TEMPO,
see:
de Nooy AEJ.
Besemer AC.
van Bekkum H.
Tetrahedron
1995,
51:
8023
<A NAME="RD07108ST-16">16 </A> For an interesting comparative kinetic
study of the oxidation of hindered secondary alcohols by TEMPO and
1-methyl-2-azaadamantane N -oxyl (1-Me-AZADO),
a less hindered nitroxyl radical than TEMPO, see:
Shibuya M.
Tomizawa M.
Suzuki I.
Iwabuchi Y.
J. Am.
Chem. Soc.
2006,
128:
8412
For examples of activation of PhIO
by acids, see:
<A NAME="RD07108ST-17A">17a </A>
Moriarty RM.
Penmasta R.
Prakash I.
Tetrahedron Lett.
1985,
26:
4699
<A NAME="RD07108ST-17B">17b </A>
Zefirov NS.
Zhandkin VV.
Dan’kov YV.
Sorokin VD.
Semerikov VN.
Koz’min AS.
Caple R.
Berglund BA.
Tetrahedron Lett.
1986,
27:
3971
<A NAME="RD07108ST-17C">17c </A>
Lee K.
Kim DY.
Oh DY.
Tetrahedron
Lett.
1988,
29:
667
<A NAME="RD07108ST-17D">17d </A>
Yang Y.
Diederich F.
Valentine JS.
J. Am. Chem. Soc.
1991,
113:
7195
<A NAME="RD07108ST-18">18 </A>
We have shown that allylic alcohols
are rapidly oxidized, at 0 ˚C, with TEMPO/PhIO/Yb(OTf)3 system,
see ref. 6b.
<A NAME="RD07108ST-19A">19a </A>
Kennedy RM.
Tang S.
Tetrahedron
Lett.
1992,
33:
3729
<A NAME="RD07108ST-19B">19b </A>
Towne TB.
McDonald FE.
J.
Am. Chem. Soc.
1997,
119:
6022
<A NAME="RD07108ST-20">20 </A>
Bailey N.
Carrington A.
Lott KAK.
Symons MCR.
J.
Chem. Soc.
1960,
290
<A NAME="RD07108ST-21">21 </A>
Strong protic acids are known to depolymerize
PhIO, see ref. 17b.
For a precedent of HReO4 -catalyzed
isomerization of allylic alcohols, see:
<A NAME="RD07108ST-22A">22a </A>
Narasaka K.
Kusuma H.
Hayashi Y.
Chem.
Lett.
1991,
1413
<A NAME="RD07108ST-22B">22b </A>
Narasaka K.
Kusama H.
Hayashi Y.
Tetrahedron
1992,
48:
2059
<A NAME="RD07108ST-23">23 </A>
In order to determine if Re2 O7 was
able to isomerize allylic alcohols in the lapse of the reaction
time (1 h), it was added (8 mol%) to a cooled solution
of 1-butyl-2-cyclopenten-1-ol in CH2 Cl2 . After
15 min, it was observed by TLC the disappearance of the starting
material and formation of UV-absorbing, nonpolar products (dehydrated
products).