Methods Inf Med 2007; 46(05): 567-571
DOI: 10.1160/ME0416
Paper
Schattauer GmbH

Accurate Variance Estimation for Prevalence Ratios

M. Wolkewitz
1   Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Freiburg, Germany
,
T. Bruckner
2   Department of Clinical and Social Medicine, University Hospital Heidelberg, Heidelberg, Germany
,
M. Schumacher
1   Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Freiburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
22 January 2018 (online)

Summary

Objectives: The log-binomial model is recommended for calculating the prevalence ratio in cross-sectional studies with binary outcomes. However, convergence problems may occur as this model is numerically unstable. If this happens, the Poisson model should be used, but the Poisson model variance needsto be adjusted. Here, we compare different adjustments.

Methods: Using simulation we evaluated the performance of Poisson models with i) a robust variance, ii) the scale parameter adjusted by Pearson’s chi-square, and iii) the scale parameter adjusted by the deviance. These models were compared with the log-binomial model with respectto hypothesis testing. Confounding and effect modification are considered.

Results: All adjustment models improved the variance estimation. The Poisson model with a robust variance performed best. When the log-binomial model is numerically stable as well as unstable, this model yields reasonable power and type I error values. But the Poisson model with the scale parameter adjusted by Pearson’s chi-square also showed good results.

Conclusions: When estimating prevalence ratios, if the log-binomial fails to converge, we recommend the Poisson modelwith a robust estimate of variance.

 
  • References

  • 1 Zocchetti C, Consonni D, Bertazzi PA. Relationship between prevalence rate ratios and odds ratios in cross-sectional studies. Int J Epidemiol 1997; 26 (01) 220-223.
  • 2 Fleming-Moran M, Thiagarajah K. Behavioral Interventions and the Role of Television in the Growing Epidemic of Adolescent Obesity: Data from the 2001 Youth Risk Behavioral Survey. Methods Inf Med 2005; 44: 303-309.
  • 3 Lee J, Chia KS. Use of the prevalence ratio v the prevalence odds ratio as a measure of risk in cross sectional studies. Occup Environ Med 1994; 51 (12) 841.
  • 4 Lee J. Odds ratio or relative risk for cross-sectional data?. Int J Epidemiol 1994; 23 (01) 201-203.
  • 5 Thompson ML, Myers JE, Kriebel D. Prevalence odds ratio or prevalence ratio in the analysis of cross sectional data: what is to be done?. Occup Environ Med 1998; 55 (04) 272-277.
  • 6 Axelson O, Fredriksson M, Ekberg K. Use of the prevalence ratio v the prevalence odds ratio as a measure of risk in cross sectional studies. Occup Environ Med 1994; 51 (08) 574.
  • 7 Strömberg U. Prevalence odds ratio v prevalence ratio. Occup Environ Med 1994; 51 (02) 143-144.
  • 8 Strömberg U. Prevalence odds ratio v prevalence ratio – some further comments. Occup Environ Med 1995; 52 (02) 143.
  • 9 Lee J, Chia KS. Estimation of prevalence rate ratios for cross sectional data: an example in occupational epidemiology. BrJInd Med 1993; 50 (09) 861-862.
  • 10 Rothman KJ, Greenland S. Modern epidemiology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 1998
  • 11 Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol 2004; 160 (04) 301-305.
  • 12 Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998; 280 (19) 1690-1691.
  • 13 McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol 2003; 157 (10) 940-943.
  • 14 Skov T, Deddens J, Petersen MR, Endahl L. Prevalenceproportionratios: estimation and hypothesis testing. Int J Epidemiol 1998; 27 (01) 91-95.
  • 15 Blizzard L, Hosmer DW. Parameter estimation and goodness-of-fit in log binomial regression. Biometrical Journal 2006; 48 (01) 5-22.
  • 16 Deddens JA, Petersen MR, Lei X. Inc SAS Institute. Estimation of prevalence ratios when PROC GENMOD does not converge. Proceedings of the 28th annual SAS Users Group International conference. 2003: 270-328.
  • 17 Deddens JA, Petersen MR. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol 2004; 159 (02) 213-214.
  • 18 Rücker G, Schoop R, Beyersmann J, Schumacher M, Zuschneid I. Are KISS Data Representative of German Intensive Care Units? Statistical Issues. Methods Inf Med 2006; 45: 424-429.
  • 19 Spiegelman D. Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol 2005; 162 (03) 199-200.
  • 20 Agresti A. Categorical Data Analysis. 2nd ed. New Jersey: John Wiley & Sons; 2002
  • 21 Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004; 159 (07) 702-706.
  • 22 Lachin JM. Biostatistical methods: the assessment of relative risks.. New York, NY: John Wiley & Sons; 2000
  • 23 Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 2003; 3 (01) 21.
  • 24 Behrens T, Taeger T, Wellmann J, Keil U. Different methods to calculate effect estimates in cross-sectional studies: a comparison between prevalence odds ratio and prevalence ratio. Methods Inf Med 2004; 43: 505-509.
  • 25 Silverstein M, Mack C N R. Effect of a clinic-based referral system to head start: a randomized controlled trial. JAMA 2004; 292 (08) 968-971.